

MEDICINALLY IMPORTANT ORCHIDS OF INDIAN HIMALAYAN REGION: PRESENT STATUS AND FUTURE PRIORITIES

Veena Pandey and Indra D Bhatt

G B Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora- 263 643, Uttarakhand, India

Abstract

Orchids, belonging to family Orchidaceae, hold highest position in the evolution of monocots and are well known for their beautiful long-lasting flowers and medicinal properties. The orchids exhibit tremendous medicinal properties due to the presence of a wide variety of chemical compounds; however, scientific advancement on most of the medicinal orchids remains largely unstated. The present paper provides an overview of some important medicinal orchids of Indian Himalayan region and suggests that extensive research is required for the characterization, commercial extraction, and purification of a wide range of biologically active compounds, present in orchids. More rigorous scientific validation of medicinal orchids is required, along with standardization of extract preparation method. This will stimulate herbal based novel drug discovery and will extend the scope of therapies using potential orchids of Himalayas. The present paper highlights various conservation issues/options along with the need for developing best package of practices for cultivation, mass multiplication, *in vitro* production of secondary metabolites, promotion of indigenous species for trade, and inventorization of orchid species both at the regional and national level. These efforts would be beneficial for the conservation of this unique group of plants for sustainable development of Himalayan communities.

Introduction

ORCHIDS BELONG to the family Orchidaceae and is represented by over 28,484 species in about 800 genera (Govaerts *et al.*, 2017). In India, around 1,256 species of orchids belonging to 155 genera are found, which are mainly distributed in Himalayas, North-East and Western Ghats, and a total of 388 orchid species are endemic to India (Singh *et al.*, 2019; Srivastava and Manjunath, 2020). However, numbers are expected to go up considerably once thorough explorations are carried out in remote regions. Orchids are well known for their floricultural and pharmaceutical values and also used in fragrance industries (De and Pathak, 2020; Devi *et al.*, 2018; Janakiram and Baskaran, 2018; Jhansi *et al.*, 2019; Pathak *et al.*, 2010; Prakash and Pathak, 2020). The entire orchid family is listed under Appendix I and II of CITES, and hence, there are some restrictions on international trade of orchid species (Hinsley *et al.*, 2018).

The Indian Himalayan Region, spreads over 11 states namely, Himachal Pradesh, Uttarakhand, Sikkim, Arunachal Pradesh, Meghalaya, Nagaland, Manipur, Mizoram, Tripura, Assam, West Bengal, and 2 union territories (Jammu and Kashmir and Ladakh), represents unique orchid biodiversity that attracts much attention since long. Several reports (Jalal and Jayanthi, 2015; Singh, 2015; Yonzone *et al.*, 2012) have enlisted different orchid species present in Himalayan states. A total of 960 orchid species are reported from the Indian Himalayan region (Samant and Pant, 2006) and the highest number of orchid species is recorded from

Arunachal Pradesh (612 species), followed by Sikkim (560 species), Darjeeling-West Bengal (479), Meghalaya (446), Assam (293), Nagaland (376), Uttarakhand (238), Mizoram (287), Manipur (422), and Tripura (51) (Singh *et al.*, 2019). In the present paper, literature on some important medicinal orchids of Indian Himalayan region with immense therapeutic potential has been compiled, and bibliometric analysis was conducted to assess the recent research trends on medicinal orchids.

Material and Methods

The literature on important medicinal orchids of Indian Himalayan Region was searched on Google Scholar and Scopus databases. Various Ayurvedic products containing orchids were identified using different online Ayurvedic stores. For bibliometric analysis, literature published in English language was searched from the period of 1948 up to 2021. A standard database Scopus (www.scopus.com) was used to systematically identify peer-reviewed journal articles and books on medicinal orchids, using combination of keywords like medicinal, orchids, Himalaya, and Himalayan. For each publication, the information like journal name, authors names, title, year of publication, and publisher was retrieved. Based on the information available in the title, keywords, and abstracts, the articles were classified into the following broad research categories: biological activity, conservation, climate change, ecology, embryology, ethnobotany, genetics and molecular biology, habitat suitability, microbial studies, nutrient analysis, post-harvest, propagation/germination, quality

inspection, primary metabolites, secondary metabolites, species discrimination, taxonomy, threats, uses, trade, and tourism.

Results and Discussion

Medicinal Importance of Himalayan Orchids

Based on the available literature, it was found that Himalayan orchids have been used since thousands of years for the treatment of different diseases like rheumatism, sciatica, neuralgia, insanity, heart problem, bone fractures, malaria, dysentery, tuberculosis, uterine diseases, hypertension, depression, epilepsy, obesity, asthma, inflammation, lung and liver diseases (Balkrishna *et al.*, 2020; Jalal *et al.*, 2008; Kumar *et al.*, 2018, 2019; Kumari and Pathak, 2020; Park *et al.*, 2020; Prakash and Pathak, 2019). They are also used in the preparation of *Chyavanprash*, a popular tonic with rejuvenating, aphrodisiac, and blood purifying properties. In Ayurveda, the ancient Indian system of health care, several orchid species are considered as medicinal. A rejuvenating herbal formulation called *Ashtavarga* which is derived from a group of eight vitality promoting and anti-ageing medicinal herbs, contains four orchid species of Himalaya namely *Crepidium acuminatum*, *Habenaria edgeworthii*, *H. intermedia*, and *Malaxis muscifera* (Handa, 1986; Hossain, 2011). Various other species mentioned in Ayurvedic system of medicine include *Acampe papillosa*, *Dendrobium monticola*, *Eulophia latifolia*, *Orchis latifolia*, *Vanda tessellata* etc. (Hossain, 2011).

Many recent reports have also highlighted the medicinal significance of orchids present in Himalayan region including Kashmir Himalayas (Shapoo *et al.*, 2013), Nagaland (Nongdam, 2014), Uttarakhand (Jalal *et al.*, 2008), and Arunachal Pradesh (Tsering *et al.*, 2017). Medicinal properties of these orchids are attributed to the presence of various secondary metabolites such as alkaloids, phenolics, and terpenoids which possess biological activities and are present in different plant parts (leaf, stem, seed, flower, and pseudobulb). Some of these compounds isolated from orchids include kinsenoside, moscatilin, bisbenzylgigantol, gastrodin, dihydrophenanthrene, ephemeroanthoquinone, triterpenoids, bibenzyl derivatives, shihunidine, shihunine, dendrophenol, moscatin, denfigenin, defuscin, amoenumin, cypripedin, crepaditin, rotundatin, cumulatin, gigantol, orchinol, hircinol, jibantine, nidemin, loroglossin, dendrobine, nobiline, nobilonine, etc. (Joseph *et al.*, 2018; Khasim *et al.*, 2020). Some of the important medicinal orchids of Indian Himalayan region, their medicinal importance, phytochemical constituents, and biological activity are described in Table 1. Despite the rich diversity of medicinally important orchids in the Indian Himalaya, only a few species have been studied for their phytochemicals and biological activities, and very few are used commercially. Some commercially available ayurvedic preparations containing medicinally important orchids of Himalaya are given in Table 2. The photographs of some medicinally important orchids of Indian Himalayan region are shown in Fig. 1A-H.

Table 1. Medicinal uses, phytochemicals, and biological activities of Himalayan orchids.

Species	Traditional uses/ ailments cured	Phytochemicals	Biological activities
<i>Acampe praemorsa</i> (Roxb.) Blatt. & McCann	Stomachache, backache, earache, cough, wounds, neuralgia, rheumatism, eye diseases, sciatica, fracture (Vibha <i>et al.</i> , 2019)	Saponin, terpenoid, tannin, glycoside, flavanoid, phenol, steroid (Suja and Williams, 2016)	Anticancer, antibacterial, antifungal, anti-inflammatory, antioxidant activities (Jhansi and Khasim, 2020; Vibha <i>et al.</i> , 2019)
<i>Aerides odorata</i> Lour.	Joint pain, swelling, wounds, tuberculosis, healing boils in nose and ear (Hossain, 2009)	Ascorbic acid, gallic acid, catechin, sinapic acid, methyl gallate, p-hydroxy benzoic acid, caffeic acid, syringic acid, ferulic acid, narigin, myrecetin, rutin, p-coumaric acid, quercetin, apigenin, and kaempferol (Prasad <i>et al.</i> , 2016)	Anticancer activity (Jhansi and Khasim, 2020; Katta <i>et al.</i> , 2019), antioxidant (Prasad <i>et al.</i> , 2016), antimicrobial activity (Paul <i>et al.</i> , 2013)
<i>Cymbidium aloifolium</i> (L.) Sw.	Emetic, purgative (Hossain, 2009), tumors, nervous disorders, vomiting, diarrhea, vertigo, eyes weakness, paralysis (Ninawe and Swapna, 2017)	Simple sugars, alkaloids, tannins, flavonoids, anthraquinones, terpenoids, coumarins (Radhika <i>et al.</i> , 2013), reducing sugar, saponin, steroid (Soumiya and Williams, 2018), leucoanthocyanins, anthocyanins, phlobatannins, glycosides (Bhowmik <i>et al.</i> , 2020) carbohydrates, alkaloids, coumarins (Shubha and Chowdappa, 2016), n-hexadecanoic acid, octadecanoic acid, 2-butyne (Rampilla and Khasim, 2020)	Antimicrobial, anticancer, anti-inflammatory, hypcholesteromic, nematicide, antiarthritic, anticoronal, anti-androgenic, diuretic, antitumour hypcholesteromic, nematicide, hemolytic, antipsychotic, antihistaminic, insectifuge, antieczemic, asphyxiant (Rampilla and Khasim, 2020),

Table 1. Medicinal uses, phytochemicals, and biological activities of Himalayan orchids (contd.).

Species	Traditional uses/ ailments cured	Phytochemicals	Biological activities
<i>Dendrobium chrysanthum</i> Wall. ex Lindl.	Antipyretic, eyes-benefiting, immuno-regulatory purposes, skin diseases (De et al., 2015a)	Flavonoids, alkaloids, phenolics, triterpenoids, glycosides, steroids and carbohydrates (Rao et al., 2020)	antibacterial (Radhika et al., 2013; Shubha and Chowdappa, 2016)
<i>D. fimbriatum</i> Hook.	Resetting of fractured bones (Shailajan et al., 2017)	Alkaloids, terpenoids, flavonoids, tannins, glycosides (Sinha and Biswas, 2020)	Antibacterial, antioxidant (Sinha and Biswas, 2020), hepatoprotective activity (Shailajan et al., 2017)
<i>D. nobile</i> Lindl.	Pulmonary tuberculosis, general debility, flatulence, dyspepsia, reduced salivation, parched and thirsty mouth, night sweats, fever, anorexia (Singh and Duggal, 2009), eye infection, burnt, fever, stomachic, tongue dryness, nervous disorder, analgesic (Meitei et al., 2019)	Mucilage, denbinobine, gigantol, dendroside A, dendronobilosides A and B, dendrobine, moscatilin, denbinobine, nobiline dendrophenol (Bhattacharyya et al., 2014; Miyazawa et al., 1997; Singh and Duggal, 2009; Suzuki et al., 1973; Zhao et al., 2001)	Anti-mutagenic, antiphlogistic (Singh and Duggal, 2009) anti-ageing, antimicrobial, antioxidant (Meitei et al., 2019), antiviral (Li et al., 2017)
<i>Flickingeria macraei</i> (Lindl.) Seidenf.	Cooling, alterative, astringent to the bowels, stimulant, nervine tonic, aphrodisiac, expectorant, asthma, bronchitis, throat troubles, fever, burning sensations, biliousness, diseases of the eye and blood (Esha et al., 2016)	α and β jibantic acid, jebantine (Singh and Duggal, 2009) carbohydrates, coumarins, alkaloids, phytosterols, flavonoids, phenolics (Chimsook, 2016) denfigenin, defuscin (Esha et al., 2016)	
<i>Habenaria edgeworthii</i> Hook.f. ex Collett	Blood diseases, asthma, leprosy, skin diseases, general debility (Giri et al., 2012a), cooling, spermopiotic (De et al., 2015a)	Alkaloids, coumarin glycosides, phenolics (Sedai, 2015), sodium, riboflavin, thiamins, tannins (Rawat et al., 2014) habenariol (Giri et al., 2012b)	Antioxidant, free radical scavenging activity (Rawat et al., 2014)
<i>H. intermedia</i> D.Don.	Cooling, spermopiotic, blood purifier, skin diseases, cough, asthma, leprosy, gout, muscular pains, sprains, general debility (Khajuria et al., 2017)	Alkaloids, phenols, thiamins, tannins, calcium, riboflavin cobalt (Rawat et al., 2014) scopoletin, gallic acid (Habbu et al., 2012), alkaloids, carbohydrates, steroids, terpenoids, flavonoids, tannins, phenolics, sinapic acid (Virk et al., 2020)	Antistress, antioxidant (Habbu et al., 2012)
<i>H. plantaginea</i> Lindl.	Chest pain, stomachache (Singh, 2018), snake bites, arthritis (De et al., 2015a) cough, asthma, helminthiasis, insanity (Keerthiga and Anand, 2015)	Alkaloids, flavonoids, tannins, phenolic compounds, phytosterols, saponins, glycosides (Keerthiga and Anand, 2015)	Antibacterial (Keerthiga and Anand, 2015)
<i>Crepidium acuminatum</i> (D.Don) Szlach.	Aphrodisiac, styptic, antidyserteric, febrifuge, tonic, burning sensation, general debility, insect bites, tuberculosis, rheumatism (Sharma et al., 2011a)	α -sitosterol, pyromeconic acid, bibenzyls, 9,10-dihydrophenanthrenes (Kannan, 2008), alkaloids, glycosides, flavonoids, α -sitosterol, piperitone, citronellal, eugenol, limonene, 1,8-cineole, p-cymene, O-methylbatatasin, cetyl alcohol (Sharma et al., 2011a), fatty acids, tocopherol, terpenoids (Lohani et al., 2013), mucilage, starch, fats, calcium oxalate, lignins, protein (Arora et al., 2017), saponins, bitter principles, steroids, sterols, essential oils, anthraquinones, coumarin, flavonoids (Arora et al., 2018)	Antioxidant, analgesic, anti-inflammatory (Kannan, 2008), antimicrobial activities (Sharma et al., 2011b; Arora et al., 2017)

Table 1. Medicinal uses, phytochemicals, and biological activities of Himalayan orchids (contd.).

Species	Traditional uses/ ailments cured	Phytochemicals	Biological activities
<i>Dactylorhiza hatagirea</i> (D.Don) Soo (<i>Orchis latifolia</i> auct. non L.)	Diabetes, diarrhea, dysentery, paralysis, convalescence, impotence, malnutrition (De et al., 2015a)	Dactylorhins A-E dactyloses A-B (Kizu et al., 1999; Wani et al., 2020), dactylorhin, ascorbic acid, butanediol, dactyloses (Haruhisa et al., 1999; Thakur, 2019), butanediol, hydroquinone, lesoglossin, militarrin, albumin, pyranoside, pyrocatechol, indole alkaloids, stilbene, resveratrol, saponins, ascorbic acid, phyllo- and naphthoquinones, glucomannan, carotenoids (Dhiman et al., 2019)	Antimicrobial (Avasthi et al., 2013), anti-inflammatory activity (Sharma et al., 2020)
<i>Satyrium nepalense</i> D.Don	Malaria, dysentery, Aphrodisiac (Jalal et al., 2008)	Alkaloids, carbohydrates, Glycosides, flavonoids, unsaturated sterols, triterpenes (Mishra and Saklani, 2012), saponins, steroids (Kawra et al., 2020) reducing sugar, cardiac glycosides, anthraquinones, tannins, phlobatanins (Bhatnagar et al., 2017)	Antioxidant (Kawra and Saklani, 2020), antibacterial (Mishra and Saklani, 2012; Saklani et al., 2011), antimycobacterial and leishmanicidal activity (Bhatnagar et al., 2017)
<i>Vanda roxburghii</i> R.Br.	Hepatitis, dyspepsia, bronchitis, piles, rheumatism, diseases of nervous system, secondary syphilis, scorpion sting, boils, fever (Hossain, 2009)	Alkaloids, gigantol, flavonoids, tannins, ocimene, linalool, withanolides, glycosides, resin, saponin, fatty acids, alkyl perulate, sitosterols, heptacosane, octacosanol, acetyl tetracosylferylurate, benzyl acetate, methylbenzoate, benzaldehyde, benzylalcohol, cinnamyl alcohol, methyl cinnamate, methyl salicylate (Mukhtar and Kalsi, 2017), anthocyanins, anthraquinones, coumarins, phalobatannin, (Biswas and Sinha, 2020)	Antimicrobial (Ahmed et al., 2000; Biswas and Sinha, 2020), analgesic, cholinesterase inhibitory activity (Uddin et al., 2015a, b)

Knowledge Gaps and Research Needs

A Scopus database was searched up to the year 2021 (limited by title-abstract-keyword), using keywords *medicinal and orchid* and *medicinal and orchid* and *Himalaya or Himalayan* which revealed a total of 373 hits and 47 hits, respectively. However, when a single

keyword *orchid* was searched, a total of 9,814 hits were obtained. This indicated that although several studies have been done on orchids, medicinal orchids are very less investigated in spite of their enormous therapeutic importance. The results of the database search indicated that the total number of annual publications on medicinal orchids increased, especially after 2009

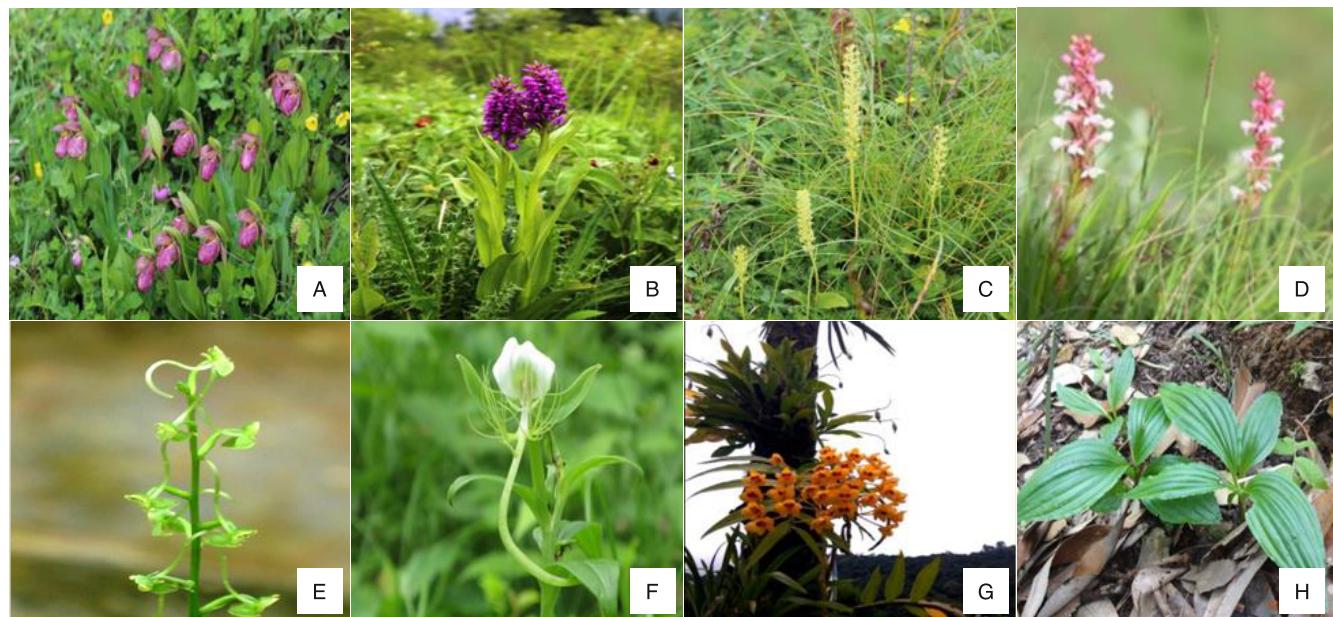


Fig. 1. A-H. Some medicinal orchids of India: A, *Cypripedium himalaicum*; B, *Dactylorhiza hatagirea*; C, *Malaxis muscifera*; D, *Satyrium nepalense*; E, *Habenaria edgeworthii*; F, *H. intermedia*; G, *Dendrobium* sp.; H, *Crepidium acuminatum*.

Table 2. Various ayurvedic preparations having medicinally important orchids of Himalaya.

Species	Ayurvedic Preparations	Ailments	Manufacturer
<i>Flickingeria macraei</i> (Lindl.) Seidenf.	<i>Anu Thailam</i>	Sinus congestion	Nagarjuna Ayurvedic Centre Ltd., Kerala
<i>Habenaria edgeworthii</i> Hook.f. ex Collett	<i>Chyavanprash</i>	Constipation, weakness, detoxification and boost immunity, heart health, improve digestion, and metabolism	Axiom Pharma Pvt. Ltd., Rajasthan
<i>H. intermedia</i> D.Don.	<i>Chyavanaprash</i>	Cough, dyspnoea, hoarseness, heart disease, brain tonic	Shree Baidyanath Ayurved Bhawan Pvt. Ltd., Dabur India Ltd.
	<i>Mahanarayan oil</i>	Relieves muscle pain, increases vitality, flexibility, circulation	Jaggi Pharmaceuticals, New Delhi
	<i>Manasamitra Vataka</i>	Psychiatric diseases, epilepsy, retarded intellect and improves memory	Nagarjuna Ayurvedic Centre Ltd., Kerala
<i>Crepidium acuminatum</i> (D.Don) Szlach.	<i>Chyavanprash</i>	Cough, dyspnoea, hoarseness, heart disease, brain tonic	Shree Baidyanath Ayurved Bhawan Pvt. Ltd., Delhi; Dabur India Ltd., Uttar Pradesh
	<i>Manasamitra Vataka</i>	Psychiatric diseases, epilepsy, retarded intellect, and improves memory	Nagarjuna Ayurvedic Centre Ltd., Kerala
	NG Herbal Face Pack	Prevents acne and pimples, exfoliates dead cells, tones skin, anti-ageing	Goodcare Pharma Pvt. Ltd., Uttarakhand
	<i>Brhat Cagalyadi Ghrta</i>	Epilepsy, burning sensation, bleeding diathesis, piles, dysuria	Nagarjuna Ayurvedic Centre Ltd., Kerala
	<i>Vidaryadi Kvatha</i>	Cough, chronic obstructive jaundice/ chlorosis, astringent	Nagarjuna Ayurvedic Centre Ltd., Kerala
	<i>Brahma Rasayan</i>	Nervous weakness, loss of memory, insomnia, mental exhaustion, high blood-pressure, headache, lung diseases, maintain heart efficiency	Dabur India Ltd., Uttar Pradesh
	<i>Chyavanprash</i>	Constipation, weakness, detoxification and boost immunity, heart health, improve digestion and metabolism	Axiom Pharma Pvt. Ltd., Rajasthan
<i>Malaxis muscifera</i> Lindl.	<i>Chyavanprash</i>	Cough, dyspnoea, hoarseness, heart disease, brain tonic	Shree Baidyanath Ayurved Bhawan Pvt. Ltd., Delhi; Dabur India Ltd., Uttar Pradesh
	<i>Mahanarayan oil</i>	Relieves muscle pain, increases vitality, flexibility, circulation	Jaggi Pharmaceuticals, New Delhi
	<i>Manasamitra Vataka</i>	Psychiatric diseases, epilepsy, retarded intellect and improves memory	Nagarjuna Ayurvedic Centre Ltd., Kerala
	<i>Brahma Rasayanam</i>	Drowsiness, tiredness, weakness and maintain heart efficiency	Nagarjuna Ayurvedic Centre Ltd., Kerala
	<i>Brhat Cagalyadi Ghrta</i>	Epilepsy, burning sensation, bleeding diathesis, piles, dysuria	Nagarjuna Ayurvedic Centre Ltd., Kerala
	<i>Vidaryadi Kvatha</i>	Cough, chronic obstructive jaundice/ chlorosis, astringent	Nagarjuna Ayurvedic Centre Ltd., Kerala
	<i>Chyavanprash</i>	Constipation, weakness, detoxification, boost immunity, heart health, improve digestion and metabolism	Axiom Pharma Pvt. Ltd., Rajasthan
<i>Dactylorhiza hatageria</i> (D.Don) Soo (<i>Orchis latifolia</i> auct. non L.)	<i>Aswagandhadi Leham</i>	Cough, asthma, tuberculosis	Vaidyaratnam Oushadhasala Pvt. Ltd., Kerala
	<i>Rathina Pursh Capsules</i>	Oligospermia, azospermia, and strengthens nervous system	SKM Siddha and Ayurvedha, Punjab

Table 2. Various Ayurvedic preparations having medicinally important orchids of Himalaya (contd.).

Species	Ayurvedic Preparations	Ailments	Manufacturer
<i>Vanda tessellata</i> (Roxb.) Hook. ex G.Don	<i>Manasamitra Vataka</i>	Psychiatric diseases, epilepsy, retarded intellect and improves memory	Nagarjuna Ayurvedic Centre Ltd., Kerala
	<i>Brhat Cagalyadi Ghrta</i>	Epilepsy, burning sensation, bleeding diathesis, piles, dysuria	Nagarjuna Ayurvedic Centre Ltd., Kerala
	<i>Dasamula Rasayana</i>	Cough, dyspnoea, rhinitis, impaired appetite, throat disease, chronic obstructive jaundice/chlorosis	Nagarjuna Ayurvedic Centre Ltd., Kerala
	<i>Kantakari Avaleha</i>	Cough, dyspnoea, hiccough, colic	Dabur India Ltd., Uttar Pradesh
	<i>Lasuairandadi Kasayam</i>	Constipation, false tumor, hernia, abdominal disease	AVS Pharma, Haryana
	<i>Nasta Puspantaka Rasa</i>	Headache, irregular cycles, pain in the back and waist	Shree Baidyanath Ayurved Bhawan Pvt. Ltd., Delhi
	<i>Rasnadi Churna</i>	Sinusitis, disorder of head	Nagarjuna Ayurvedic Centre Ltd., Kerala
	<i>Shadbindu Taila</i>	Loose tooth, eye sight weakness, hair loss, disease of head	Shree Baidyanath Ayurved Bhawan Pvt. Ltd., Delhi
<i>Auromère Ayurveda</i> Massage Oil		Effective for all types of massage and muscle treatment	<i>Auromère Ayurvedic Imports, U.S.A.</i>

(Fig. 2a). Similarly, the number of publications on Himalayan medicinal orchids was found to increase after 2013 (Fig. 2b).

Based on the information available in the title, keywords, and abstracts of 373 publications, the articles were classified into the following broad research categories: biological activity, conservation, climate change, ecology, embryology, ethnobotany, genetics and molecular biology, habitat suitability, microbial studies, nutrient analysis, post-harvest, propagation, quality inspection, primary metabolites, secondary metabolites, species discrimination, taxonomy, threats, uses, trade, and tourism. It was found that the major research areas of most of the publications on medicinal

orchids were genetics and molecular biology (104) followed by propagation (64), biological activities (57), secondary metabolites (55), microbial studies (33), ethnobotany (30), conservation (26), ecology (11), and few articles on the remaining categories. Some newer disciplines like genetics and molecular biology have contributed greatly to the increasing number of papers appearing during the recent years (Fig. 2). Despite an encouraging increase in publications on medicinal orchids, more studies are required focusing on identification of various threats to orchids and different *ex situ* and *in situ* conservation approaches. Considering the research gaps, orchid research should be more focused on monitoring population trends and

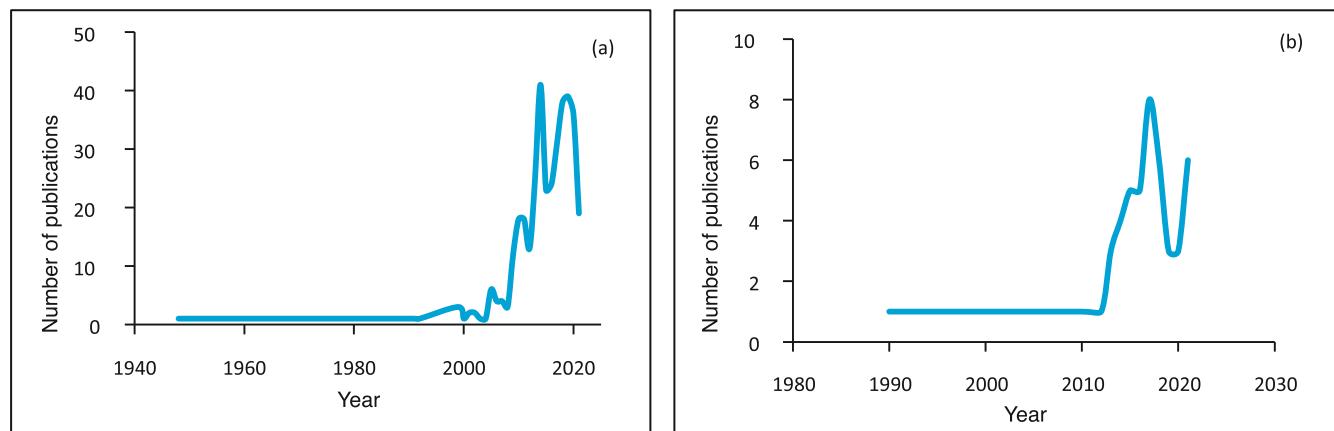


Fig. 2. a-b. Number of publications that integrate keywords: a, Medicinal and orchid; b, Medicinal and orchid and Himalaya or Himalayan.

distributions, management of species and their habitats, and increasing conservation education and awareness.

Strategies for Promoting Conservation and Sustainable Utilization of Orchids

Some of the strategies for promoting conservation and sustainable utilization of orchids are described below (Fig. 3).

Use of Biotechnological Tools for Mass Multiplication

Orchids are generally propagated by vegetative means as well as through seeds. Vegetative propagation of orchids is done by division and cutting, however, it is an extremely slow process. Propagation through seeds is also not suitable for orchids because of the minute and non-endospermic seeds, and the immature embryos at seed dispersal stage, which are responsible for reduced germination of orchids in nature (Bhowmik *et al.*, 2020; Gurudeva, 2019; Kaur *et al.*, 2017; Pathak *et al.*, 2017). Therefore, mass scale production of orchids could be effectively achieved through *in vitro* methods using plant tissue culture techniques (Lekshmi and Decruse, 2018; Madhavi and Shankar, 2019; Thakur and Pathak, 2020). Such methods help in sustainable production of quality planting material and also enable the conservation of valuable plant material for possible re-introduction and habitat restoration programs in future (Anuprabha and Pathak, 2019, 2020; Anuprabha *et al.*, 2017; Decruse and Gangaprasad, 2018; Vasundhra *et al.*, 2019). *In vitro* methods also allow the storage of propagules through two different methods: i) direct storage, where plant materials are transferred to growth

chambers with various low temperature and light intensity; ii) development of synthetic seeds, where the plant materials are encapsulated by sodium alginate, using $\text{Ca}(\text{NO}_3)_2$ as gelling agent to develop synthetic seeds which are subsequently stored at various temperatures (Kaur and Pathak, 2014; Mondal and Banerjee, 2017; Pathak and Vij, 2005; Pehwal *et al.*, 2012; Verma and Pathak, 2021). Such *in vitro* methods are also used to increase the amount of high valued medicinally important secondary metabolites in orchids (Giri *et al.*, 2012a).

In Situ Conservation

The most ideal and economical way to conserve orchids is to conserve them in their original habitat (De and Pathak, 2018). Many protected areas have been established in the country, however only few protected areas are specifically created for orchids. Enhanced *in situ* orchid protection requires the creation of orchid reserves. Several Indian states have taken such initiatives for the protection of orchids in their natural habitats like Appangala in Karnataka and Loleyangaon in Darjeeling District of West Bengal have been declared as Orchid Reserves by their State Governments (Gurung and Gurung, 2016).

Ex Situ Conservation

In the current scenario of global climate change, *in situ* conservation techniques alone might not be sufficient to prevent the extinction of many orchid species (Barua *et al.*, 2019; Shapoo *et al.*, 2020). The goal of *ex situ* orchid conservation is to save the orchid

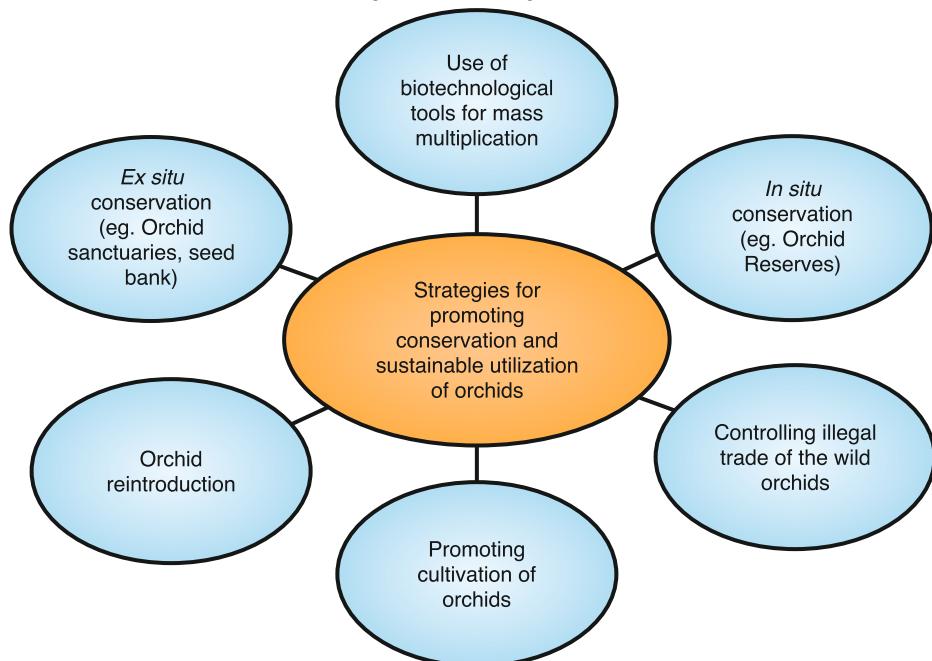


Fig. 3. Schematic representation of various strategies for promoting conservation and sustainable utilization of orchids.

species as they become extinct in their natural habitats. *Ex situ* method usually takes the form of a living collection in a collection garden such as in botanic gardens, as well as in universities and parks. Other *ex situ* strategies include orchid seed bank, germplasm banks, orchid repositories, etc. Orchid sanctuaries have been set up in Deorali and Singtam in Sikkim and Sessa in Arunachal Pradesh for *ex situ* conservation of orchids.

Reintroduction

Reintroduction is the release of individuals into a formerly occupied area after the native population has been lost (Reiter *et al.*, 2016). Reintroduction in conjunction with *in situ* habitat protection and *ex situ* conservation is recognised as a valuable tool for conservation. Orchid reintroduction using seedlings obtained from flasks or nurseries has been successfully done for some species like *Ipsea malabarica*, *Laelia cinnabarinus*, *Paphiopedilum sanderianum* etc. (Irawati, 2013). Such type of orchid conservation strategies will also engage the community and raise public awareness for conservation.

Cultivation

Orchids occupy a significant position in floriculture which has emerged as a major international trade and thus immense scope exists for commercial cultivation of varieties of orchids for both domestic and international markets. However, there is a lack of proper information about their cultivation practices *i.e.* optimum congenial environment, soil preparation, planting and establishment, prevention of pests/diseases, harvest and post-harvest technologies *etc.* which must be worked out for promoting cultivation of orchids.

Controlling Illegal Trade

Orchids are amongst the plants most threatened by illegal trade (Ticktin *et al.*, 2020). Although, the majority of the global orchid trade consists of legal, greenhouse-grown flowers and plants, however, many orchid species are also harvested from the wild for local, regional and international trade, without the necessary harvest or trade permits. Thus, efforts should be made to reduce the illegal wildlife trade and to promote sustainable forms of trade.

Conclusion and Future Prospects

A large number of orchid species from the Indian Himalayan region possess strong medicinal properties and are being used traditionally to cure many ailments since time immemorial. A number of compounds have been isolated from these species which can be potential

alternatives to conventional drugs that have many side effects. However, scientific validation of these medicinal orchids for the prevention and treatment of various health ailments and standardization of the method of preparation of herbal formulation along with evaluation of safety and efficacy is a fundamental requirement for promoting their use in health care system. Although the Himalayan orchids offer excellent medicinal properties, their natural populations are under high threat due to natural and anthropogenic pressures and the entire orchid family is listed under Appendix I and II of CITES. Thus, conservation of these plants through *in situ* and *ex situ* conservation approaches, reintroduction, and cultivation is required. Further, due to slow growing nature of these plants, poor propagation through seeds and poor availability of species in the wild for vegetative propagation, and multiplication, orchids should be promoted through non-conventional means like *in vitro* propagation or micropropagation techniques. These techniques should also be promoted to enhance production of pharmacologically important metabolites, present in orchids.

Acknowledgement

Authors wish to thank late Dr. R. S. Rawat, Former and the present Director, G. B. Pant National Institute of Himalayan Environment for constant encouragement and necessary facilities. Fellowship received by the first author from In House Project-4 of the Institute is gratefully acknowledged.

References

- Ahmed, F., A. Sayeed, A. Islam, S. A. Salam, G. Sadik, M. A. Sattar, and G. A. M. Khan. 2000. Antimicrobial activity of extracts and a glycoside from *Vanda roxburghii* Br. *Pak. J. Biol. Sci.*, **5**: 189-91.
- Anuprabha and Promila Pathak. 2019. *In vitro* asymbiotic seed germination and seedling development in *Coelogyne fimbriata* Lindl. *J. Orchid Soc. India*, **33**: 83-89.
- Anuprabha and Promila Pathak. 2020. Micropropagation of *Coelogyne fimbriata* Lindl. using pseudobulb explants. *J. Orchid Soc. India*, **34**: 131-36.
- Anuprabha, Promila Pathak, Ankush Prakash, and Jitender Kumar. 2017. Regeneration competence of *Dendrobium nobile* Lindl. through pseudobulb segments: A study *in vitro*. *J. Orchid Soc. India*, **31**: 71-75.
- Arora, M., G. Kaur, P. S. Kahlon, A. Mahajan, and J. K. Sembhi. 2017. Pharmacognostic evaluation and antimicrobial activity of endangered ethnomedicinal plant *Crepidium acuminatum* (D.Don) Szlach. *Pharmacogn. J.*, **9**: 56-63.
- Arora, M., A. Mahajan, and J. K. Sembhi. 2018. Fingerprint profile of an important therapeutic plant of Astavarga *Crepidium acuminatum* (D.Don) Szlach by HPTLC. *Curr. Trends Biotechnol. Pharm.*, **12**(3): 257-64.

Avasthi, S. A., S. Ghosal, and S. Purkayastha. 2013. Study of antimicrobial activity of *Orchis latifolia*. *Int. J. Pharm. Bio. Sci.*, **4**(4): 638-46.

Balkrishna, Acharya, Rajesh Juyal, Reema Devi, Jitender Kumar, Ankush Prakash, Promila Pathak, Ved Priya Arya, and Ashwani Kumar. 2020. Ethnomedicinal status and pharmacological profile of some important orchids of Uttarakhand (NorthWestern Himalayas), India. *J. Orchid Soc. India*, **34**: 137-47.

Barua, K. N., B. Bora, and A. Borah. 2019. Diversity and *ex situ* conservation of orchid species in Lekhapani Reserve Forest under Makum Coal Field, Assam. *J. Orchid Soc. India*, **33**: 113-19.

Bhatnagar, M., N. Sarkar, N. Gandharv, O. Apang, S. Singh, and S. Ghosal. 2017. Evaluation of antimycobacterial, leishmanicidal and antibacterial activity of three medicinal orchids of Arunachal Pradesh, India. *BMC Compl. Alternative Med.*, **17**(1): 1-10.

Bhattacharyya, P., S. Kumar, R. Diengdoh, and P. Tandon. 2014. Genetic stability and phytochemical analysis of the *in vitro* regenerated plants of *Dendrobium nobile* Lindl., an endangered medicinal orchid. *Meta Gene*, **2**: 489-504.

Bhowmik, Tapash Kumar and Md. Mahbubur Rahman. 2020. *In vitro* seed germination and micropropagation of *Dendrobium chrysotoxum* Lindl. (Golden Bow): A highly fragrant orchid species of Bangladesh. *J. Orchid Soc. India*, **34**: 69-77.

Bhowmik, T. K., M. Rahman, and M. Mahbubur. 2020. Phytochemical screening of a therapeutic orchid, *Cymbidium aloifolium* (L.) Sw. from its wild and *in vitro* origin: A comparative study. *J. Med. Plants*, **8**(5): 130-35.

Biswas, K. and S. N. Sinha. 2020. Evaluation of phytoconstituents and antibacterial activity of *Vanda tessellata* using *in vitro* model. *In: Orchid Biology: Recent Trends & Challenges* (eds. S. M. Khasim, S. N. Hegde, M. T. G. Arnao, and K. Thammasiri) pp. 473-80. Springer, Singapore.

Chimsook, T. 2016. Phytochemical screening, total phenolic content, antioxidant activities and cytotoxicity of *Dendrobium signatum* leaves. *In: MATEC Web of Conferences*, DOI:10.105/matecconf/2016 6203005.

De, L. C. and Promila Pathak. 2018. Conservation, management, and utilization of orchid genetic resources. *J. Orchid Soc. India*, **32**: 81-91.

De, L. C. and Promila Pathak. 2020. Good agricultural practices of *Dendrobium* orchids. *J. Orchid Soc. India*, **34**: 35-43.

De, L. C., Promila Pathak, A. N. Rao, and P. K. Rajeevan. 2015a. 12 medicinal and aromatic orchids. *In: Commercial Orchids*, pp. 243-49. De Gruyter Open, Poland.

De, L. C., A. N. Rao., P. K. Rajeevan, Promila Pathak, and D. R. Singh., 2015b. Medicinal and aromatic orchids. *Int. J. Curr. Res.*, **7**(9): 19931-35.

Decruse, S. W. and A. Gangaprasad. 2018. Restoration of *Smithsonia maculata* (Dalz.) Saldanha, an endemic and vulnerable orchid of Western Ghats through *in vitro* propagation. *J. Orchid Soc. India*, **32**: 25-32.

Devi, Kaushalya, S. S. Samant, Sunil Puri, and S. Dutt. 2018. Diversity, distribution pattern and indigenous uses of Orchids in Kanawar Wildlife Sanctuary of Himachal Pradesh, North Western Himalaya. *J. Orchid Soc. India*, **32**: 17-23.

Dhiman, N., N. K. Sharma, P. Thapa, I. Sharma, M. K. Swarnkar, A. Chawla, R. Shankar, and A. Bhattacharya. 2019. *De novo* transcriptome provides insights into the growth behavior and resveratrol and trans-stilbenes biosynthesis in *Dactylochila hatagirea*- An endangered alpine terrestrial orchid of Western Himalayas. *Sci. Rep.*, **9**: 1-13.

Esha, V., C. Shilpa, P. Bharat, and Neeru. 2016. Physico-chemical and phytochemical evaluation of *Dendrobium macraei* Lindl. (Whole Plant). *Int. J. Pharmacogn. Phytochem. Res.*, **8**(11): 1801-11.

Giri, L., P. Dhyani, S. Rawat, I. D. Bhatt, S. K. Nandi, R. S. Rawal, and V. Pande. 2012a. *In vitro* production of phenolic compounds and antioxidant activity in callus suspension cultures of *Habenaria edgeworthii*: A rare Himalayan medicinal orchid. *Ind. Crops Prod.*, **39**: 1-6.

Giri, L., A. Jugran, S. Rawat, P. Dhyani, H. Andola, I. D. Bhatt, R. S. Rawal, and U. Dhar. 2012b. *In vitro* propagation, genetic and phytochemical assessment of *Habenaria edgeworthii*: An important Astavarga plant. *Acta Physiol. Plant.*, **34**(3): 869-75.

Govaerts, R., P. Bernet, K. Kratochvil, G. Gerlach, G. Carr, P. Alrich, A. M. Pridgeon, J. Pfani, M. A. Compacci, D. Holland Bapista, H. Tiggers, J. Snow, P. Cribb, A. George, K. Creuz, and J. J. Wood. 2017. *World checklist of Orchidaceae*. Royal Botanic Gardens, Kew, London, U.K.

Gurudeva, M. R. 2019. *In vitro* seed germination and developmental morphology of seedlings in *Dendrobium ovatum* (L.) Kraenzl. *J. Orchid Soc. India*, **33**: 31-41.

Gurung, A. and C. Gurung. 2016. Domestication and *ex situ* conservation of three species of *Dendrobium* Swartz (Orchidaceae) under greenhouse conditions. *Pleione*, **10**(2): 323-32.

Habbu, P. V., D. M. Smita, K. M. Mahadevan, R. A. Shastry, and S. M. Biradar. 2012. Protective effect of *Habenaria intermedia* tubers against acute and chronic physical and psychological stress paradigms in rats. *Rev. Bras. Farmacogn.*, **22**(3): 568-79.

Hajra, P. K. and A. De. 2010. Phyto-geographic analysis of orchid flora in India. *J. Orchid Soc. India*, **24**(1-2): 43-46.

Handa, S. S. 1986. Orchids for drugs and chemicals. *In: Biology, Conservation and Culture of Orchids* (eds. S. P. Vij) pp. 89-100. East West Press, New Delhi, India.

Haruhisa, K., K. Ei-ichi, and T. Tsuyoshi. 1999. Studies on nepalese crude drugs. XXVI. Chemical constituents of panch aunle, the roots of *Dactylochila hatagirea* D.Don. *Chem. Pharm. Bull.*, **47**(11): 1618-25.

Hegde, S. N. 2016. Commercial potential of orchids in India and societal benefits. *J. Orchid. Soc. India*, **30**: 43-49.

Hinsley, A., H. J. De Boer, M. F. Fay, S. W. Gale, L. M. Gardiner, R. S. Gunasekara, P. Kumar, S. Masters, D. Metusala, D. L. Roberts, S. Veldman, S. Wong, and J. Phelps. 2018. A review of the trade in orchids and its implications for conservation. *Bot. J. Linn. Soc.*, **186**(4): 435-55.

Hossain, M. M. 2009. Traditional therapeutic uses of some indigenous orchids of Bangladesh. *Med. Aromat. Plant Sci. Biotechnol.*, **42**(1): 101-06.

Hossain, M. M. 2011. Therapeutic orchids: Traditional uses and recent advances- An overview. *Fitoterapia*, **82**(2): 102-40.

Irawati. 2013. Conservation of orchids the gems of the tropics. In: *Conservation of Tropical Plant Species* (eds. M. N. Normah, H. F. Chin, and B. M. Reed)pp. 171-87. Springer, New York, U.S.A.

Jalal, J. S. 2012. Distribution pattern of orchids in Uttarakhand, Western Himalayas, India. *Int. J. Plant Biol.*, **3**: 24-26.

Jalal, J. S. and J. Jayanthi. 2015. An annotated checklist of the orchids of Western Himalaya, India. *Lankesteriana*, **15**(1): 7-50.

Jalal, J. S., P. Kumar, and Y. P. S. Pangtey. 2008. Ethnomedicinal orchids of Uttarakhand, Western Himalaya. *Ethnobot. leafl.*, **12**: 1227-30.

Janakiram, T. and V. Baskaran. 2018. Commercialisation and conservation aspects of orchids. *J. Orchid Soc. India*, **32**: 55-61.

Jhansi, K. and S. M. Khasim. 2020. Anticancer property in *Acampe praemorsa* and *Aerides odorata* (Orchidaceae), an *in vitro* approach. In: *Orchid Biology: Recent Trends & Challenges* (eds. S. M. Khasim, S. N. Hegde, M. T. G. Arnao, and K. Thammasiri)pp. 519-30. Springer, Singapore.

Jhansi, K., R. Venkatesh, and S. M. Khasim. 2019. Pharmacological studies in *Luisia zeylanica* Lindl. *J. Orchid Soc. India*, **33**: 95-103.

Joseph, M., L. Jose, and S. Sequeria. 2018. A comparative phytochemical screening of four epidendroid orchids of Kerala, India. *J. Orchid Soc. India*, **32**: 41-43.

Kannan, R. V. 2008. *Phytochemical Investigation of Malaxis acuminata D.Don and Synthetic Studies on the Bibenzyl Constituents*. Ph.D. Thesis, Panjab University, Chandigarh, India.

Katta, J., V. Rampilla, and S. M. Khasim. 2019. A study on phytochemical and anticancer activities of epiphytic orchid *Aerides odorata* Lour. *European J. Med. Plants*, **28**(3): 1-21.

Kaur, Saranjeet, and Promila Pathak. 2014. Synthetic seeds and *in vitro* propagation of *Cymbidium aloifolium* (Linn.) Sw. *J. Orchid Soc. India*, **28**: 103-08.

Kaur, S., Promila Pathak, Ankush Prakash, Anamika, and Aakanksha Sharma. 2017. *Ex situ* conservation of floriculturally and medicinally important endangered orchid, *Coelogyne cristata* Lindl. *J. Orchid Soc. India*, **31**: 15-22.

Kawra, M. and S. Saklani. 2020. Isolation and screening of acetamide derivative as a potent antioxidant agent from *Satyrium nepalense*. *Plant Archives*, **20**(2): 5388-92.

Kawra, M., S. Saklani, and V. Parcha. 2020. Preliminary phytochemical screening and antioxidant activity of five medicinal plants of Garhwal Himalaya: A comparative study. *Vegetos*, **33**(3): 610-13.

Keerthiga, M. and S. P. Anand. 2015. Study on preliminary phytochemical and antibacterial activity against human pathogens of an endangered orchid- *Habenaria plantaginea* Lindl. *Int. J. Pharm. Sci. Res.*, **6**(3): 1101.

Khajuria, A. K., G. Kumar, and N. S. Bisht. 2017. Diversity with ethnomedicinal notes on Orchids: A case study of Nagdev forest range, Pauri Garhwal, Uttarakhand, India. *J. Med. Plants*, **5**(1): 171-74.

Khasim, S. M., S. N. Hegde, M. T. González-Arnao, and K. Thammasiri. 2020. *Orchid Biology: Recent Trends & Challenges* (eds. S. M. Khasim, S. N. Hegde, M. T. G. Arnao, and K. Thammasiri) pp. 1-531. Springer, Springer Nature, Singapore.

Kizu, H., E. I. Kaneko, T. Tomimori. 1999. Studies on Nepalese Crude Drugs. XXVI.1 Chemical Constituents of Panch Aunle, the Roots of *Dactylorhiza hatagirea* D. Don. *Chem. Pharm. Bull.*, **11**: 1618-25.

Kumar, Ashish, S. S. Samant, L. M. Tewari, and Shiv Paul. 2018. Diversity, distribution and indigenous uses and status of Orchids in Kalatop- Khajjiar Wildlife Sanctuary, Chamba district Himachal Pradesh. *J. Orchid Soc. India*, **32**: 93-98.

Kumar, V., S. S. Samant, O. Prakash, R. Kundra, A. Singh, S. Dutt, and L. M. Tewari. 2019. Diversity, distribution, indigenous uses and conservation of orchids in Khokhan Wildlife Sanctuary of Himachal Pradesh, NorthWestern Himalaya. *J. Orchid Soc. India*, **33**: 121-29.

Kumari, Anamika and Promila Pathak. 2020. Medicinal orchids of Shimla hills, Himachal Pradesh (NorthWestern Himalayas), threats, and conservation measures. *J. Orchid Soc. India*, **34**: 45-56.

Lekshmi, S. and S. W. Decruse. 2018. *In vitro* symbiotic seed germination of *Vanda spathulata* (L.) Spreng., a vulnerable orchid of Western Ghats. *J. Orchid Soc. India*, **32**: 113-19.

Li, R., T. Liu, M. Liu, F. Feimin Chen, S. Liu, and J. Yang, 2017. Anti-influenza A virus activity of Dendrobine and its mechanism of action. *J. Agric. Food Chem.*, **65**: 3665-74.

Lohani, N. L. M. Tewari, G. C. Joshi, K. Kishor, S. Kumar, G. Tewari, and N. Joshi. 2013. Chemical composition of *Microstylis wallichii* Lindl. from Western Himalaya. *J. Med. Plant Res.*, **7**(31): 2289-92.

Madhavi, M. and P. C. Shankar. 2019. Effects of different growth additives on seed germination of *Vanda tessellata* (Roxb.) Hook. ex G. Don- A medicinal orchid. *J. Orchid Soc. India*, **33**: 105-12.

Meitei, A. L., R. K. Pamarthi, R. Kumar, N. T. Bhutia, D. Rai, P. K. Babu, A. K. Singh, R. Gazmer, and D. R. Singh. 2019. *Dendrobium nobile* orchid in traditional medicine- A phytochemical analysis. *Indian J. Hortic.*, **76**(3): 557-60.

Mishra, A. P. and S. Saklani. 2012. *Satyrium nepalense*: A rare medicinal orchid of Western Himalaya (India); phytochemical screening, antimicrobial evaluation and conservation studies. *Indones. J. Pharm.*, **23**(3): 162-70.

Miyazawa, M., H. Shimamura, S. Nakamura, and H. Kameoka. 1997. Antimutagenic activity of gigantol from *Dendrobium nobile*. *J. Agric. Food Chem.*, **45**: 2849-53.

Mondal, T. and N. Banerjee. 2017. Micropropagation and *in vitro* conservation of threatened orchids: A brief review. *CIBTech J. Biotech.*, **6**: 1-12.

Mukhtar, H. M. and V. Kalsi. 2017. Therapeutic potential of *Vanda roxburghii* Roxb.: A review. *Int. J. Curr. Pharm. Rev. Res.*, **8**(3): 261-65.

Ninawe, A. S. and T. S. Swapna. 2017. Orchid diversity of NorthEast India- Traditional knowledge and strategic plan for conservation. *J. Orchid Soc. India*, **31**: 41-56.

Nongdam, P. 2014. Ethno-medicinal uses of some orchids of Nagaland, North-East India. *Res. J. Med. Plant*, **8**: 126-39.

Park, S. Y., T. T. Ho, and K. Y. Paek. 2020. Medicinal orchids: production of bioactive compounds and biomass. In: *Orchid Biology: Recent Trends & Challenges* (eds. S. M. Khasim, S. N. Hegde, M. T. G. Arnao, and K. Thammasiri) pp. 439-50. Springer, Singapore.

Pathak, Promila and S. P. Vij. 2005. Regeneration of *Aerides multiflora* Roxb. using synthetic seeds: A study *in vitro*. In: *Proceedings of the 17th World Orchid Conference-Shah Alam 2002* (eds. J. Ardit and Helen Nair) pp. 267-71. Borneo Natural History Publications, Kota Kinabalu, Sabah, Borneo, Malaysia.

Pathak, Promila, Shivani Verma, Ankush Prakash, and K. C. Mahant. 2017. Regeneration competence of an ornationally important epiphytic orchid, *Rhynchostylis gigantea* (Lindl.) Ridl. through leaf segments: A study *in vitro*. *J. Orchid Soc. India*, **31**: 97-101.

Pathak, Promila, A. Bhattacharya, S. P. Vij, K. C. Mahant, Mandeep K. Dhillon, and H. Piri. 2010. An update on the medicinal orchids of Himachal Pradesh with brief notes on their habit, distribution, and flowering period. *J. Non Timber Forest Products*, **17**(3): 365-72.

Paul, P., A. Chowdhury, D. Nath, and M. K. Bhattacharjee. 2013. Antimicrobial efficacy of orchid extracts as potential inhibitors of antibiotic resistant strains of *Escherichia coli*. *Asian J. Pharm. Clin. Res.*, **6**(3): 108-11.

Pehwal, Anju, S. P. Vij, Promila Pathak, and L. K. Attri. 2012. Augmented shelf-life and regeneration competence of AC supplemented synthetic seeds in *Cymbidium pendulum* (Roxb.) Sw. *Curr. Bot.*, **3**(5): 30-34.

Prakash, Ankush and Promila Pathak. 2019. Orchids of Water Catchment Wildlife Sanctuary, Shimla (Himachal Pradesh), NorthWestern Himalayas: Their diversity, status, indigenous uses, and conservation status. *J. Orchid Soc. India*, **33**: 65-77.

Prakash, Ankush and Promila Pathak. 2020. Effects of different concentrations of NPK on vegetative growth parameters of a floriculturally important epiphytic orchid, *Dendrobium chrysanthum* Wall. ex Lindl. *J. Orchid Soc. India*, **34**: 117-21.

Prasad, G., A. A. Mao, D. Vijayan, S. Mandal, K. Chaudhuri, and T. Seal. 2016. Comparative HPLC fingerprinting and antioxidant activities of *in vitro* and *in vivo* grown *Aerides odorata*, a medicinal orchid. *J. Chem. Biol. Phys. Sci.*, **6**(2): 454-68.

Radhika, B., J. V. V. S. N. Murthy, and D. N. Grace. 2013. Preliminary phytochemical analysis and antibacterial activity against clinical pathogens of medicinally important orchid *Cymbidium aloifolium* (L.) Sw. *Int. J. Pharm. Sci. Res.*, **4**(10): 3925-31.

Rampilla, V. and S. M. Khasim. 2020. GC-MS analysis of organic extracts of *Cymbidium aloifolium* (L.) Sw. (Orchidaceae) leaves from Eastern Ghats of India. In: *Orchid Biology: Recent Trends & Challenges* (eds. S. M. Khasim, S. N. Hegde, M. T. G. Arnao, and K. Thammasiri) pp. 507-17. Springer, Singapore.

Rao, P. S., N. Krishna, S. Ganapathy, K. Sunitha, and S. Mondal. 2020. Phytochemical evaluation and biological screening of *Dendrobium chrysanthum* Wall. ex Lindl. *Plant Arch.*, **20**(2): 4239-44.

Rawat, S., H. Andola, L. Giri, P. Dhyani, A. Jugran, I. D. Bhatt, and R. S. Rawal. 2014. Assessment of nutritional and antioxidant potential of selected vitality strengthening Himalayan medicinal plants. *Int. J. Food Prop.*, **17**(3): 703-12.

Reiter, N., J. Whitfield, G. Pollard, W. Bedggood, M. Argall, K. Dixon, B. Davis, and N. Swarts. 2016. Orchid reintroductions: An evaluation of success and ecological considerations using key comparative studies from Australia. *Plant Ecol.*, **217**(1): 81-95.

Saklani, S., A. P. Mishra, V. Parcha, and S. Chandra. 2011. Phytochemical and antibacterial evaluation of *Satyrium nepalense* and *Saussurea simpsoniana*, the threatened medicinal herbs of Uttarakhand. *J. Pharm. Res.*, **4**(11): 3866.

Samant, S. S. and S. Pant. 2006. Diversity, distribution and conservation status of orchids in Indian Himalayan region. In: *Proceedings of the National Seminar on Orchid Conservation, Improvement and Commercialization*. pp. 7. TOSI, Panjab University, Chandigarh, India.

Sedai, C. P. 2015. *Phytochemical profiling of Habenaria edgeworthii* Hook. f. ex Collett (vridhhi) of Deoban under Chakrata forest division. M.Sc. Dissertation, FRI (Deemed) University, Indian Council of Forestry Research & Education, Uttarakhand, India.

Shailajan, S., S. Pednekar, S. Menon, and D. Gurjar. 2017. Evidence based validation of *Dendrobium fimbriatum* as a hepatoprotectant: An orchid from NorthEast India. In: *Proc. 5th International Conference and Exhibition on Pharmacognosy, Phytochemistry & Natural Products*, Melbourne, Australia.

Shapoo, G. A., Z. A. Kaloo, A. H. Ganie, and S. Singh. 2013. Ethnobotanical survey and documentation of some orchid species of Kashmir Himalaya, J&K- India. *Int. J. Pharma. Biol. Sci.*, **4**(2): 32-40.

Shapoo, G. A., Z. A. Kaloo, A. H. Ganie, and S. Singh. 2020. Development of agro-techniques for *ex situ* conservation of *Dactylorhiza* Neck. ex Nevski (Orchidaceae) species growing in Kashmir Himalaya, India. *J. Orchid Soc. India*, **34**: 123-30.

Sharma, P., P. Garg, S. Dadhwal, G. Singh, D. K. Sharma, and S. Sharma. 2011b. Antimicrobial activity of butanol extract of *Malaxis acuminata*. *J. Pharm. Res.*, **4**(8): 2703-04.

Sharma, P., N. Mahajan, P. Garg, G. Singh, S. Dadhwal, and S. Sharma. 2011a. *Malaxis acuminata*: A review. *Int. J. Res. Ayurveda Pharm.*, **2**(2): 422-25.

Sharma, S., P. K. Jain, and G. Parkhe. 2020. Extraction, phytochemical screening and anti-inflammatory activity of hydro-ethanolic extract of roots of *Dactylorhiza hatagirea*. *J. Drug Deliv. Ther.*, **10**(3): 86-90.

Shubha, J. and S. Chowdappa. 2016. Phytochemical analysis and antibacterial activity of *Cymbidium aloifolium* L. A

medicinal orchid from Western Ghats of Karnataka, India. *Int. J. Adv. Sci. Res. Pub.*, **2**: 19-23.

Singh, A. and S. Duggal. 2009. Medicinal orchids-an overview. *Ethnobot. Leafl.*, **13**: 351-63.

Singh, B. 2015. *Himalayan Orchids: Distribution and Taxonomy*. Educationist Press, Write and Print Publications, New Delhi, India.

Singh, S. K., D. K. Agrawala, J. S. Jalal, Paramjit Singh, and A. A. Mao. 2019. *Orchids of India: A Pictorial Guide*. Botanical Survey of India, Kolkata, India.

Singh, D. K. 2018. *In vitro* propagation of orchids for their conservation: A critical review. *Int. J. Sci. Res. Rev.*, **7**: 1990-2036.

Sinha, S. N. and K. Biswas. 2020. Phytochemical screening and evaluation of antimicrobial potential of *Dendrobium fimbriatum* Hook. In: *Orchid Biology: Recent Trends & Challenges* (eds. S. M. Khasim, S. N. Hegde, M. T. G. Arnao, and K. Thammasiri) pp. 531-38. Springer, Singapore.

Soumiya, G. and Williams B. Christudas. 2018. Qualitative phytochemical analysis and antioxidant activities of different solvent extracts of *Cymbidium aloifolium* (L.) Sw flower. *J. Appl. Sci. Comput.*, **5**(12): 1899-903.

Srivastava, D. and K. Manjunath. 2020. DNA barcoding of endemic and endangered orchids of India: A molecular method of species identification. *Pharmacogn. Mag.*, **16**(70): 290-99.

Suja, M. R. and C. B. Williams. 2016. Micropropagation, phytochemical screening and antioxidant potential of a wild epiphytic orchid *Acampe praemorsa* (Roxb.) of Kanyakumari district, India. *Eur. J. Pharm. Med. Res.*, **3**(5): 572-76.

Suzuki, M., Y. Hayakawa, K. Aoki, H. Nagase, H. Nakamura, K. Yamada, and Y. Hirata. 1973. Stereochemistry of intermediates in the syntheses of *Dendrobium* alkaloids. *Tetrahedron Lett.*, **14**: 331-34.

Thakur, S. D. 2019. Phytochemical constituents of some important medicinal plants from Dachigam National Park, Srinagar, Jammu and Kashmir. *Pharm. Innov.*, **8**(2): 68-71.

Thakur, Babita and Promila Pathak. 2020. *In vitro* propagation of *Herminium lanceum* (Thunb. ex Sw.) Vuijk (Orchidaceae), through asymbiotic seed germination: A therapeutically important and endangered orchid from NorthWestern Himalayas. *J. Orchid Soc. India*, **34**: 61-67.

Ticktin, T., D. Mondragón, L. Lopez Toledo, D. Dutra Elliott, E. Aguirre León, and M. Hernández Apolinar. 2020. Synthesis of wild orchid trade and demography provides new insight on conservation strategies. *Conserv. Lett.*, **13**(2): DOI:10.1111/conl.12697.

Tsering, J., N. Tam, H. Tag, B. J. Gogoi, and O. Apang. 2017. Medicinal orchids of Arunachal Pradesh: A review. *Bull. Arunachal Forest Res.*, **32**(1-2): 1-16.

Uddin, M. J., M. M. Rahman, M. Abdullah-Al-Mamun, and G. Sadik. 2015a. *Vanda roxburghii*: An experimental evaluation of antinociceptive properties of a traditional epiphytic medicinal orchid in animal models. *BMC Compl. Altern. Med.*, **15**(1): 1-8.

Uddin, M. N., R. Afrin, M. J. Uddin, M. J. Uddin, A. H. M. K. Alam, A. A. Rahman, and G. Sadik. 2015b. *Vanda roxburghii* chloroform extract as a potential source of polyphenols with antioxidant and cholinesterase inhibitory activities: Identification of a strong phenolic antioxidant. *BMC Compl. Altern. Med.*, **15**(1): 1-9.

Vasundhra, Promila Pathak, and Ankush Prakash. 2019. *In vitro* shoot induction and regeneration potential of floral buds in *Crepidium acuminatum* (D.Don) Szlach., a medicinal ayurvedic plant from NorthWestern Himalayas. *J. Orchid Soc. India*, **33**: 43-48.

Verma, S. and Promila Pathak. 2021. Effective use of synthetic seed technology in the regeneration of *Cymbidium aloifolium* using protocorm-like bodies. *Curr. Sci.*, **120**(3): 570-72.

Vibha, S., S. S. Hebbar, S. N. Mahalakshmi, and T. P. Kekuda. 2019. A comprehensive review on ethnobotanical applications and pharmacological activities of *Acampe praemorsa* (Roxb.) Blatt. & McCann (Orchidaceae). *J. Drug Deliv. Ther.*, **9**(1): 331-36.

Vij, S. P. 2001. Orchidology in India: Current status. In: *Orchids: Conservation, Culture, Farming and Trade* (ed. S. N. Hegde) pp.1-13. OSA. Himalayan Publishers, Itanagar, India.

Virk, J. K., V. Gupta, M. Maithani, R. K. Rawal, S. Kumar, R. Singh, and P. Bansal. 2020. Isolation of sinapic acid from *Habenaria intermedia* D. Don: A new chemical marker for the identification of adulteration and substitution. *Curr. Tradit. Med.*, **6**(4): 380-87.

Wani, I. A., V. Kumar, S. Verma, A. Tasleem Jan, and I. A. Rather. 2020. *Dactylorhiza hatagirea* (D. Don) Soo: A critically endangered perennial orchid from the North-West Himalayas. *Plants*, **9**(12): 1644.

Yonzone, R., D. Lama, R. B. Bhujel, and S. Rai. 2012. Orchid species diversity of Darjeeling Himalaya of India. *Int. J. Pharm. Life Sci.*, **3**(3): 1533-50.

Zhao, W., Q. Ye, X. Tan, H. Jiang, X. Li, K. Chen, and A. D. Kinghorn. 2001. Three new sesquiterpene glycosides from *Dendrobium nobile* with immunomodulatory activity. *J. Nat. Prod.*, **64**: 1196-200.