

LIGNIN DEGRADING EFFICACY OF RHIZOCTONIA SOLANI A STUDY IN VITRO

P Kaushik and P Pal

Department of Botany and Microbiology, Gurukul Kangri Vishwavidyalaya,
Hardwar-249 404, Uttarakhand, India

Abstract

The lignin degrading capacity of *Rhizoctonia solani*, isolated from *Vanda testacea* Reichb.f. (Orchidaceae) was assessed *in vitro*. Qualitative test showed the positive result while quantitative estimation includes the estimation of xylanase activity, total phenols and total soluble proteins. Xylanase activity revealed that maximum peak was achieved on 14th day, the activity value being $10.21 \pm 0.12 \text{ IU ml}^{-1}$. It decreased on increasing incubation period. Total phenols were recorded to be high on 8th day of incubation with $12.10 \pm 0.02 \mu\text{g ml}^{-1}$. The amount of phenols tended to decrease on 10th day having $11.67 \pm 0.03 \mu\text{g ml}^{-1}$. Extracellular protein was found to be maximum on 12th day of incubation having the value $5.02 \pm 0.06 \mu\text{g ml}^{-1}$.

Introduction

LIGNIN IS the main component of all vascular plants. It is a recalcitrant heteropolymer of phenyl-propanoid unit present in woody plant tissues and provides the rigidity to them. The term lignin has been derived from Latin 'lignum' means wood, is the product of the free-radical polymerization of substituted p-hydroxycinnamyl alcohols; the three phenolic precursors coumaryl, coniferyl and sinapyl alcohols which differ in their degree of methoxylation (Kirk and Fenn, 1979). These precursors are synthesized from L-phenylalanine and L-tyrosine generated via the shikimic acid metabolic pathway, where the compounds are initially derived from carbon dioxide fixed by plant photosynthesis (Higuchi et al., 1977). Many fungi are known to degrade lignin e.g. *Armillaria*, *Clavaria*, *Coprinus*, *Pleurotus*, *Poria* etc. As orchids are known to possess the mycorrhizal fungi (Kaushik, 1983), and we had already tested the cellulose degradation efficacy of *Rhizoctonia solani* (Kumar and Kaushik, 2004), the present investigation was carried out to test its lignin degradation efficacy.

Material and Methods

Fungal Strain

The fungus *Rhizoctonia solani* was isolated from *Vanda testacea* Reichb.f. an epiphytic orchid, and maintained on PDA (Potato Dextrose Agar) medium slant at 4°C.

Medium and Culture Conditions

The lignin degrading ability of the fungus was assessed qualitatively and quantitatively. For qualitative estimation, the methyl orange agar medium (Field, 1993; Rodriguez et al., 2000) was used. The composition of medium was potato extract: 20.0g / %, glucose: 2.5g / %, methyl orange: 0.5g / %, agar: 2.0g / %, and

ampicillin: 0.05g / %.

Quantitatively, the lignolytic capacity of fungus was determined in medium containing KH_2PO_4 (2.0 g/l), $(\text{NH}_4)_2\text{SO}_4$ (2.1 g/l), $\text{MgSO}_4 \cdot 5\text{H}_2\text{O}$ (0.3 g/l), CaCl_2 (0.3 g/l), $\text{MnSO}_4 \cdot 5\text{H}_2\text{O}$ (0.00156 g/l), $\text{ZnSO}_4 \cdot 7\text{H}_2\text{O}$ (0.0014 g/l), $\text{CoCl}_2 \cdot 6\text{H}_2\text{O}$ (0.00266 g/l) and 1% lignin sulphonic sodium salt. The medium pH was maintained at 5. Homogenized mycelium from 5-10 day old cultures was used to inoculate 250 ml Erlenmeyer flasks containing 50ml of medium. Three replicate flasks were incubated at $28 \pm 2^\circ\text{C}$ in a rotary shaker at 120 rpm. Samples were collected at different time intervals and centrifuged; the filtrate was used to test the xylanase activity, total proteins and total phenols.

The xylanase activity was estimated according to Ghose and Bisaria (1987), the soluble protein was estimated by the method of Lowry et al. (1951) and total phenols were estimated according to Bray and Thorpe (1954).

Results and Discussion

The study of lignin degradation has been a neglected area but preliminary efforts have revealed a fascinating and unusual process, even before many of the detailed features have been delineated. Although the only microbes shown to metabolize lignin efficiently are Basidiomycetes, other fungi are known to degrade it slowly (Eslyn et al., 1975; Haider and Trojanowski, 1980; Lundström, 1973). But little is known about their role in the natural process, and very little is known about the chemical and physiological aspects of their activities. This perhaps is the first attempt using a fungal symbiont isolated from the orchid *Vanda testacea* Reichb.f. growing at Dehradun in outer ranges of the Shivalik Hills. The results are summarized (Table 1; Fig. 1 a-c) and discussed briefly as follows:

Table 1. Estimation of xylanase, total soluble production and total phenols.

S.No.	Number. of days	Xylanase (IU ml ⁻¹)	Total soluble proteins (µg ml ⁻¹)	Total phenols (IU ml ⁻¹)
1.	2	2.48±0.30	2.02±0.06	10.08±0.04
2.	4	4.92±0.62	3.0 ± 0.25	11.02±0.03
3.	6	6.28±0.27	3.78 ± 0.09	11.89±0.06
4.	8	7.62±0.33	4.02 ± 0.09	12.10±0.02
5.	10	8.10±0.30	4.66 ± 0.08	11.67±0.03
6.	12	9.75±0.19	5.02 ± 0.06	11.02±0.03
7.	14	10.21±0.12	5.72 ± 0.05	10.78±0.02
8.	16	9.08±0.17	6.13 ± 0.09	10.32±0.02
9.	18	7.62±0.19	6.78 ± 0.05	9.67±0.03
10.	20	7.30±0.37	7.08 ± 0.07	9.21±0.04
11.	22	6.21±0.52	7.98 ± 0.02	8.80±0.01
12.	24	5.68±0.16	8.10 ± 0.04	8.56±0.03
13.	26	4.92±0.12	8.21 ± 0.05	8.10±0.02
14.	28	3.61±0.32	8.76 ± 0.04	7.90±0.02
15.	30	2.98±0.20	9.14 ± 0.05	7.45±0.02

Each value is expressed as mean ± S.D. (n=3)

Qualitative tests for lignin degradation yielded positive results. The decolorization of methyl orange agar plates from dark brown chocolate to light brown was seen with passage of time. The lignolytic activity of isolates was assessed by xylanase activity, total phenols and total soluble proteins. Studies on xylanase activity revealed that maximum peak was achieved on 14 days the activity value being 10.21±0.12 IU ml⁻¹. It decreased with increase in incubation period. Total phenols were highest on day 8 after incubation with 12.10±0.02 µg ml⁻¹. Their amount tended to decrease on 10th day having the value of 11.67±0.03 µg ml⁻¹.

Interestingly, the amount of extracellular proteins invariably increased with increase in incubation period.

Studies on lignin degradation showed that temperature was an important factor for the degradation. Temperature of 28°C and shaking condition in rotary shaker at 120 rpm was maintained through out the process, results were verified according to Kirk *et al.* (1978) and da Silva and Carmona (2008). Earlier, Seyis and Aksöz (2005) using xylan as the only carbon source for xylanase production from *Trichoderma harzianum* obtained the maximum level of activity at the end of 13

days as is also true in our studies.

Wahleithner *et al.* (1996) studied four different laccases (monophenol oxidase) in *Rhizoctonia solani*, and at least three laccases in *Botrytis cinerea* (Marbach *et al.*, 1984; Pezet, 1998; Viterbo *et al.*, 1994;). Laccase was also reported in *Coniochaeta* (Barbosa *et al.*, 1996), *Hortaea acidophila* (Palonen *et al.*, 2003), *Penicillium chrysogenum* (Rodriguez *et al.*, 1996) and *Xylaria* (Liers *et al.*, 2006). *Fusarium proliferatum*, which is able to mineralize synthetic lignin, also secretes superoxide radicals during lignin mineralization (Regalado *et al.*, 1999). Such peroxide radicals may generate highly reactive hydroxyl radicals, which are known to be involved in lignin degradation (Guillen *et al.*, 2000).

Presently, the phenolic content was also recorded high, in accord with similar finding by Krishna and Bagyaraj (1984). The higher amount of phenol might be one of the factor responsible for increased disease resistance found in mycorrhizal plants. The phenolic substances like alexins, hircinol, loroglossal and orchinol have been isolated and identified from orchids during the process of infection. Thus the mycorrhizal fungus in orchids can be exploited for degradation of lignin.

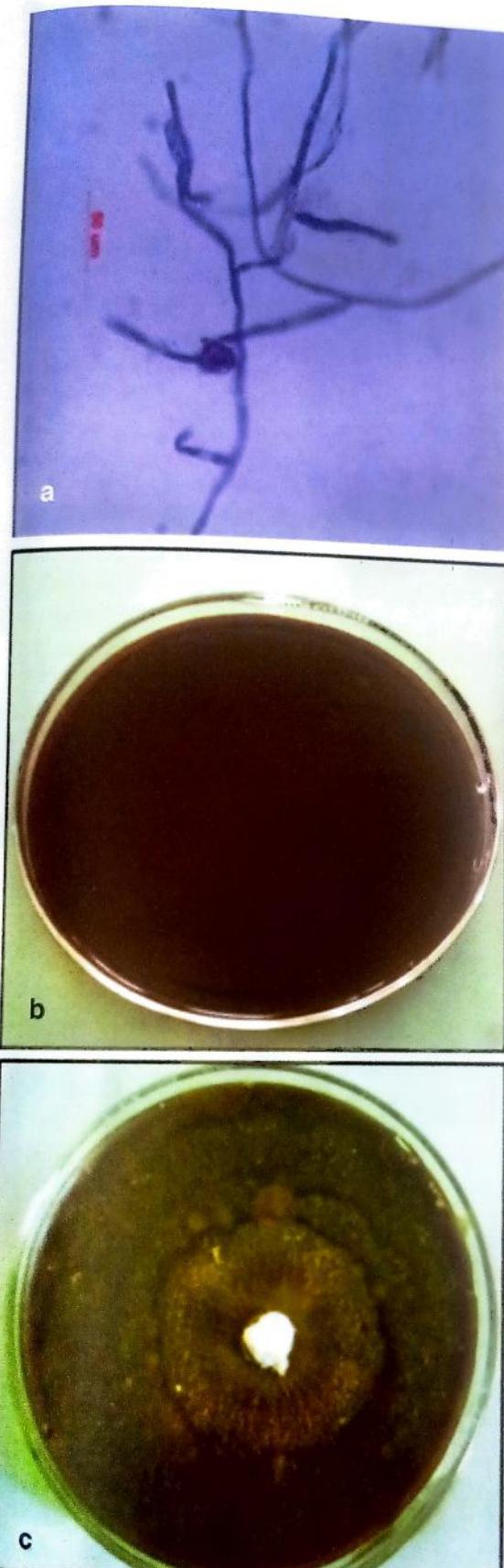


Fig. 1 a-c. *Rhizoctonia solani* cultures : a, Isolates from *Vanda testacea*; b, On Methyl orange agar medium (control); c, Positively testing for lignin degradation.

References

Barbosa, A. M., R. F. H. Dekker, and G. E. St Hardy. 1996. Veratryl alcohol as an inducer of laccase by an ascomycete, *Botryosphaeria* sp. when screened on the polymeric dye poly R-478. *Lett. Appl. Microbiol.*, **23**: 93-96.

Bray, H. C. and W. V. Thorpe. 1954. Analysis of phenolic compounds of interest in metabolism. *Meth. Biochem. Analysis*, **1**: 27-52.

da Silva de Oliveira, L. A. and E.G. Carmona. 2008. Production and characterization of cellulase free xylanase from *Trichoderma inhamatum*. *Appl. Biochem. Biotechnol.*, **150**: 117-25.

Eslyn, W. E., T. K. Kirk, and M. J. Effland. 1975. Changes in the chemical composition of wood caused by six rot fungi. *Phytopathology*, **65**: 473-76.

Field, J. A., E. G. de Jong Feijoo-costa, and J.A.M. de Bont. 1993. Screening for ligninolytic fungi applicable to the degradation of xenobiotics. *Trends Biotechnol.*, **11**: 44-49.

Ghose, T.K. and V.S. Bisaria. 1987. Measurement of hemicellulase activities. *Pure Appl. Chem.*, **59**: 1739-52.

Guillen, F., V. Gomez-Toribio, C. Munoz, M.J. Martinez, and A.T. Martinez. 2000. Production of hydroxyl radicals by the synergistic action of fungal laccase and aryl alcohol oxidase. *Arch. Biochem. Biophys.*, **383**: 142-47.

Haider, K. and J. Trojanowski. 1980. A comparison of the degradation of ¹⁴C labelled DHP and corn stalk lignins by micro and macrofungi and by bacteria. In: *Lignin Biodegradation: Microbiology, Chemistry and Potential Applications* (eds. T. K. Kirk, T. Higuchi and H.M. Chang). pp 111-134. CRC Press, Boca Raton, Florida.

Higuchi, T., M. Shimada, F. Nakatsubo, and M. Tanahashi. 1977. Differences in biosynthesis of guaiacyl and syringyl lignin in wood. *Wood Sci. Technol.*, **11**: 153-67.

Kaushik, P. 1983. *Ecological and Anatomical Marvels of the Himalayan Orchids*. Today and Tomorrow Printers and Publishers, New Delhi, India.

Kirk, T. K. and P. Fenn. 1979. Formation and action of the ligninolytic system in Basidiomycetes. In: *Decomposer Basidiomycetes and their Biology and Ecology* (eds. J.C. Frankland, J.N. Hedger and M.J. Swift). Cambridge University Press, Cambridge, London.

Kirk, T. K., E. Schultz, W. J. Connors, L. F. Lorenz, and J. G. Zeikus. 1978. Influence of culture parameters on lignin metabolism by *Phanerochaete chrysosporium*. *Archives of Microbiology*, **117**: 277-85.

Krishna, K.R. and D.J. Bagyaraj. 1984. Phenols in mycorrhizal roots of *Arachis hypogaea*. *Experientia*, **40**: 85-86.

Kumar, R. and P. Kaushik 2004. Isolation of a cellulase producing mycorrhizal fungus *Rhizoctonia solani* from *Zeuxine strateumatica* (Linn.) Schltr. *J. Orchid Soc. India*, **18**: 101-08.

Liers, C., R. Ullrich, K. T. Steffen, A. Hatakka, and M. Hofrichter. 2006. Mineralization of ¹⁴C labelled lignin and extracellular enzyme activities of the wood colonizing Ascomycetes *Xylaria hypoxylon* and *Xylaria polymorpha*. *Appl. Microbiol. Biotechnol.*, **69**: 573-79.

Lowry, O. H., N. J. Rosenbrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with folin-phenol reagent. *J. Biol. Chem.*, **193**: 265-75.

Lundström, H. 1973. Studies of the wood-decaying capacity of the soft rot fungi *Allescheria terrestris*, *Phialophora (Margarinomyces) luteo-viridis* and *Phialophora richardsiae*. Royal College of Forestry, Department of Forest Products, Research Notes, No. R87, Stockholm.

Marbach, I., E. Harel, and A. M. Mayer. 1984. Molecular properties of extracellular *Botrytis cinerea* laccase. *Phytochemistry*, **23**: 2713-17.

Palonen, H., M. Saloheimo, L. Viikari, and K. Kruus. 2003. Purification characterization and sequence analysis of a laccase from the ascomycete *Mauginiella* sp. *Enzyme Microbiol. Technol.*, **33**: 854-62.

Pezet, R. 1998. Purification and characterization of a 32-kda laccase like stilbene oxidase produced by *Botrytis cinerea* Pers. Fr. *FEMS Microbiology Letters*, **167**: 203-08.

Regalado, V., F. Perestelo, A. Rodriguez, A. Carnicero, F.J. Sosa, G. De la Fuente, and M.A. Falcon. 1999. Activated oxygen species and two extracellular enzymes: Laccase and aryl-alcohol oxidase novel for the lignin degrading fungus *Fusarium proliferatum*. *Appl. Microbiol. Biotechnol.*, **51**: 388-90.

Rodrigues, M., V. N. Rodrigues, A. F. Rodney, G.E. Serra, S.R. Andrietta, and T.T. Franco. 2000. Producao de xarope de acuár invertido obtido por hidrolise heterogenea através de planejamento experimental. *Ciencia e Tecnologia dos Alimentos*, **2(1)**: 103-09.

Rodriguez, A., M. A. Falcon, A. P.F. Carnicero, G. De la Fuente, J. Trojanowski. 1996. Laccase activities of *Penicillium chrysogenum* in relation to lignin degradation. *Appl. Microbiol. Biotechnol.*, **45**: 399-403.

Seyis, I. and N. Aksoz. 2005. Xylanase production from *Trichoderma harzianum* 1073 D3 with alternative carbon and nitrogen sources. *Food Technology and Biotechnology*, **43**: 37-40.

Viterbo, A., R. C. Staples, B. Yagen, and A. M. Mayer. 1994. Selective mode of action of cucurbitacin in the inhibition of laccase formation in *Botrytis cinerea*. *Phytochemistry*, **35**: 1137-42.

Wahleithner, J. A., F. Xu, K. M. Brown, S.H. Brown, E.J. Golightly, T. Halkier, S. Kauppinen, A. Pederson, and P. Schneider. 1996. The identification and characterization of four laccases from the plant pathogenic fungus *Rhizoctonia solani*. *Current Genetics*, **29**: 395-403.