

GREEN POD CULTURE IN *DENDROBIUM CHRYSANTHUM LINDL.*: A STUDY IN VITRO

Anuprabha and Promila Pathak

Orchid Laboratory, Botany Department, Panjab University, Chandigarh-160014, India

Abstract

Dendrobium chrysanthum, an epiphytic orchid of North Eastern India finds extensive utility in traditional system of medicine for its antipyretic and immunomodulatory effects. Unregulated collection and habitat destruction pressures have detrimentally affected the size and frequency of its natural populations. It is getting rare and needs to be conserved. With a view to enlarging its population base, the germination competence of immature seeds was presently tested using green pod culture technique. The seeds positively responded to germination on Mitra et al. medium but the germination process leading to seedling development was markedly influenced in the additional presence of growth additives. While, the protocorms multiplied rapidly in cultures treated with either of Peptone and Yeast extract, early development of healthy seedlings was achieved on KN and AC supplemented media.

Introduction

THE ORCHID seeds are poorly organized; they lack endosperm and have undifferentiated embryos that require a fungal stimulus for germination in nature. Their ability to germinate *in vitro*, prior to reaching maturity (Sagawa, 1963) laid the foundation of green pod culture technique, which has added new dimensions to orchid propagation.

Dendrobium chrysanthum is a widely distributed species extending from India, Nepal, Bhutan, China, Thailand, and Laos to Vietnam. It finds extensive utility in traditional system of Chinese medicine for its antipyretic and immunomodulatory effects. The species is also effective in treating stomach pains, mouth sores, sunstrokes and other conditions caused by dry weather and pollution. According to Bensky and Gamble (1993), *D. chrysanthum* is also used to enhance skin quality. In India, this epiphytic species is met with in North Eastern Region where it dwells in tropical climates within an altitudinal range of 300-1200 m. Unregulated collection and habitat destruction pressures have detrimentally affected the size and frequency of its natural populations. It is getting rare and needs to be conserved. With a view to enlarging its population base, the germination competence of immature seeds was presently tested using green pod culture technique. Some of the salient results are presented in this paper.

Material and Methods

Explant Sterilization

The green and undehisced capsules of *Dendrobium chrysanthum*, harvested 48 wks after pollination (wap), served as source of immature seeds. The freshly harvested capsules were scrubbed with 'Teepol' (0.01%), and washed thoroughly under running tap water for 15-20 min. They were then dipped in 70% ethyl

alcohol for 30 sec, flamed and subjected to 8 min, surface sterilization with $HgCl_2$ solution (0.1%) prior to washing with sterilized distilled water. 'Teepol' was used as a wetting agent. The surface sterilized capsules were also treated with Streptomycin (0.01%) and Bavistin (0.1%) solutions. The capsules, thus, prepared were split opened with a sterilized blade to scoop out the immature seeds.

Culture Media and Incubation Conditions

The germination potential of immature seeds was assessed on Mitra et al. (1976, M) medium and its different combinations with growth additives [peptone (2g l^{-1}), yeast extract (2g l^{-1}); activated charcoal (2g l^{-1}); coconut water (10%); auxin (IAA, 1mgl^{-1}); and cytokinin (KN, 1mgl^{-1})]. The cultures were maintained at $25 \pm 2^\circ\text{C}$ temperature and exposed to 12 hr, illumination of 3500 lux intensity. These were subcultured at regular intervals. The physical conditions were kept constant for initiation, multiplication and maintenance of cultures.

Acclimatization

Healthy seedlings with 2-3 well grown leaves and 1-2 roots were gradually hardened *in vitro*, by sequential elimination of growth additives, vitamins, sucrose and minor salts from the nutrient matrix at 15 days interval. The hardened seedlings were washed thoroughly with lukewarm water to remove agar and potted in clay pots (6 cm dia.), using charcoal, moss clippings, pine bark, and brick-bats (1:1:1:1) as the potting media.

Statistical Analysis

One way analysis of variance was performed with respect to each response (average \pm standard error against each additive is mentioned in Table 1). As ANOVA results showed the non significant difference of additives at 5% level of significance, various groups of additives showing identical / similar response were

formed statistically. To this end, Tukey Test was performed at 5% level with respect to each response.

Results

The immature seeds from green capsules germinated readily on Mitra *et al.* (1976, M) medium and its various combinations with growth additives (see Table 1). In the basal medium, nearly 65% seeds germinated and developed into protocorms. Chlorophyll development was a post-protocorm phenomenon and the differentiation of 1st leaf primordium preceded that of 1st root primordium. Seedlings complete with 2-3 leaves and 1-2 roots were obtained within 190 days. The morphogenetic changes leading to seedling development were somewhat accelerated in the additional presence of AC.

The germination frequency was impaired and morphogenetic change leading to seedling

development was accelerated when growth additives were used in the medium (Table 1). IAA favoured early development of leaf and root primordia and its efficacy was further improved in AC supplemented medium. KN induced early seedling development and it was better used with AC. The protocorms multiplied rapidly and these followed an accelerated development in to seedlings in Peptone (P) treated cultures. Multiple protocorms were likewise obtained in Yeast Extract (YE) supplemented medium; the combination favoured early rooting in the germinating entities. Small sized protocorms were observed in CW enriched combination.

A medium containing KN and AC proved best for germination and early seedling development. Seedlings complete with 2-3 leaves and 1-2 roots were transferred to green house with 70% survival. A treatment with Peptone was beneficial for protocorm multiplication.

Table 1. *In vitro* seed germination and seedling development on Mitra *et al.* (1976, M) medium, in *Dendrobium chrysanthum*.

Additives	Germination frequency (%)	Time taken in days for						Remarks
		Onset of germination	Spherule formation	Protocorm formation	Emergence of first leaf primordium	Emergence of first root primordium	Formation of complete seedling	
AC	65.75±0.85 ^a	11.50±0.65 ^a	23.25±0.85 ^a	41.50±0.65 ^a	88.25±0.48 ^a	120.00±0.82 ^a	190.25±1.03 ^a	Healthy seedlings
IAA	69.00±0.41 ^a	9.00±0.41 ^b	22.25±0.85 ^c	36.00±1.08 ^b	82.00±0.82 ^b	112.00±1.08 ^b	190.25±1.03 ^a	Healthy seedlings
IAA + AC	75.25±0.85 ^b	9.00±0.41 ^b	22.25±0.85 ^c	39.00±0.41 ^a	81.00±0.70 ^b	96.00±0.82 ^c	198.50±1.32 ^b	Better leaf and root growth
KN	92.00±0.82 ^{def}	9.00±0.41 ^b	21.00±0.41 ^c	36.00±1.08 ^b	75.00±0.41 ^c	88.75±1.03 ^e	159.00±0.41 ^c	Better leaf and root growth
KN + AC	94.0±0.41 ^d	8.00±0.41 ^c	18.00±0.82 ^b	31.50±0.65 ^c	66.00±0.82 ^{def}	88.00±0.41 ^e	155.00±0.41 ^d	Better root growth
P	88.0±1.01 ^{egh}	8.00±0.41 ^c	18.0±0.41 ^b	28.0±0.82 ^c	68.00±0.82 ^{def}	92.00±0.82 ^d	186.00±0.41 ^e	Early seedling development
P + AC	90.00±0.41 ^e	7.25±0.25 ^d	17.00±0.41 ^{bd}	26.0±0.82 ^d	64.0±0.41 ^{de}	88.00±0.82 ^e	170.00±1.08 ^f	Protocorm multiplication; luxuriant growth
YE	94.00±0.41 ^d	9.00±0.41 ^b	19.00±0.41 ^b	32.00±0.82 ^c	72.00±1.08 ^{cl}	89.00±0.41 ^e	163.00±1.08 ^c	Good for germination and subsequent developmental stages
YE + AC	95.00±0.41 ^d	7.00±0.41 ^d	18.00±0.82 ^b	30.00±0.82 ^c	84.00±0.41 ^b	88.00±1.22 ^e	160.00±0.82 ^c	Protocorm multiplication
CW	82.00±0.82 ^f	11.00±0.41 ^a	21.50±0.65 ^c	36.00±0.82 ^b	78.50±1.32 ^{bc}	98.00±0.41 ^c	173.00±0.70 ^f	Healthy seedlings
CW+AC	86.0±0.82 ^{eg}	11.00±0.41 ^a	20.02±0.71 ^c	31.50±0.65 ^c	69.00±0.41 ^{defg}	96.00±0.82 ^e	170.50±1.25 ^f	Small sized protocorms

Entries in column nos. 2 to 7 are Mean ± S.E.; same alphabetical letter in the superscript denotes that the corresponding means are in the same group using Tukey test at 5%.

Figs. 1- 12. *In vitro* seed culture in *Dendrobium chrysanthum*: 1, Immature seeds at the time of inoculation ($\times 10$); 2, Multiple embryos emerging out of bursted seed coat ($\times 10$); 3, Multiplication of protocorms (M); 4, Rapid multiplication of protocorms and differentiation of leaf primordia (M+IAA); 5-6, Formation of leaves (M+P+AC, M+IAA); 7-8, Differentiation of protocorms and leaf formation (M+KN+AC; M+P); 9, Differentiation of protocorms (M+CW+AC) Healthy seedlings (M, M+YE, M+KN)

Discussion

The immature seeds from green capsules of *Dendrobium chrysanthum* were successfully germinated under asymbiotic conditions *in vitro*. Literature studies reveal that, in orchids, the immature seeds germinate better than the mature ones. However, the stage at which the embryos can be cultured successfully varies with the species, genus, hybrid, nutrient medium, and culture conditions (Arditti *et al.*, 1982). Presently, the seeds were obtained 48 wap, and vitamin enriched Mitra *et al.* (1976) medium was used has the nutrient pool as done in several earlier investigations (Mitra, 1986; Pathak *et al.*, 1992, 2001, 2011; Piri *et al.*, 2013; Vij and Pathak, 1988).

The type and concentration of growth substances plays an important role during *in vitro* propagation of orchids (Arditti and Ernst, 1993). Presently, IAA supported better germination frequency and early differentiation in the germinating entities but seedlings took longer to develop in its presence in earlier studies, it was shown to improve germination frequency in *Calanthe discolor* and *Laeliocattleya* (Kano, 1965), promote protocorm formation in *Rhynchostylis retusa*, *Saccolabium calceolare*, and *Vanda testacea* (Vij *et al.*, 1981), and favour organogenesis in *Cattleya* (Withner, 1959); it was, however, inhibitory to germination in *Dendrobium nobile* (Miyazaki and Nagamatsu, 1965) and *Dactylorhiza purpurella* and *Coelogyne viride* (Hadley, 1970), besides delaying seedling development in *Cymbidium lowianum* (Sood, 1984), *Dendrobium chrysanthum*, *Rhynchostylis retusa* and *Vanda testacea* (Pathak, 1989). In our study, KN proved beneficial for inducing early germination and seedling development in contrast to its detrimental effect on the processes in several orchids (Arora, 1990; Hadley, 1970; Sharma and Tandon, 1986). Presently, YE supported better germination frequency and protocorm multiplication besides accelerating seedling formation in accord with its similar efficacy in many orchids representing diverse habits and habitats (Krishna Mohan and Jorapur, 1986; Mahant, 1991; Mead and Bulard, 1979; Pathak, 1989; Prasad and Mitra, 1975; Vij *et al.*, 1981). It however, impaired germination in *Aerides multiflora* (Vij *et al.*, 1981) and *Dactylorhiza maculata* cultures (Van Wae and Debergh, 1986); CW is used extensively in orchid micropropagation (Arditti, 1967, 2008; Arditti and Ernst, 1984). Presently, CW though proved beneficial for enhancing the germination frequency but it delayed seedling development. It favoured germination in *Cattleya* (Kerbauy and Handro, 1981), *Cleisostoma racemiferum* (Temjensangba and Deb, 2006), *Dendrobium* spp. (Devi *et al.*, 1990), and *Paphiopedilum purpuratum* (Yam and Weatherhead, 1988), and seedling growth in *Dendrobium* spp. (Devi

et al., 1990). High adsorption affinity of activated charcoal to excessive and inhibitory compounds in the culture media may be responsible for maximum germination of seed and production of significantly large protocorms in this species. AC promoted germination frequency, protocorm multiplication, chlorophyll development, and healthy growth of seedlings in a large number of orchid species (Arditti and Ernst, 1984; Hossain *et al.*, 2008, 2009; Pathak *et al.*, 2001; Vij and Pathak, 1988; Yam *et al.*, 1989).

Present results indicate that green pod culture is a feasible method for *Dendrobium chrysanthum* propagation and can be successfully used for orchid conservation.

References

Arditti, J. 1967. Factors affecting the germination of orchid seeds. *Bot. Rev.*, 33: 1-97.

Arditti, J. 2008. *Micropropagation of Orchids*, 2nd edn. Blackwell, Cambridge, U.K.

Arditti, J. and R. Ernst. 1984. Physiology of germinating orchid seeds-A manual. In: *Orchid Biology-Reviews and Perspectives* (ed. J. Arditti) Vol. III pp. 177-222. Cornell University Press, Ithaca, New York.

Arditti, J. and R. Ernst. 1993. *Micropropagation of Orchids*. John Wiley and Sons, New York.

Arditti, J., M.A. Clements, G. Fast, G. Hodley, G. Nishimura, and R. Ernst. 1982. Orchid seed germination and seeding culture A manual. In: *Orchid Biology, Reviews and Perspectives*. Vol. II (ed. J. Arditti) pp 243-370. Cornell University Press, Ithaca, New York.

Arora, S. 1990. *Asymbiotic Germination and Micropropagation of Some Commercially Viable and Endangered Orchids of India*. Ph. D. Thesis, Panjab University, Chandigarh, India.

Bensky, D., and A. Gamble. 1993. *Chinese Herbal Medicine Materia Medica*. Eastland Press, Seattle WA, United States.

Devi, J., M. Nath, M. Devi, and P.C. Deka. 1990. Effect of different media on germination and growth of some North East Indian species of *Dendrobium*. *J. Orchid Soc. India*, 4: 45-49.

Hadley, G. 1970. The interaction of kinetin, auxin and other factors in the development of north temperate orchids. *New Phytol.*, 69: 549-55.

Hossain, M.M., M. Sharma, and Promila Pathak. 2008. *In vitro* mass propagation of an economically important orchid, *Cymbidium aloifolium* (L.) Sw. *J. Orchid Soc. India*, 22: 91-95.

Hossain, M.M., M. Sharma, and Promila Pathak. 2009. Cost effective protocol for *in vitro* mass propagation of *Cymbidium aloifolium* (L.) Sw.-a medicinally important orchid. *Eng.-Life. Sci.*, 9 (1): 1-10.

Kano, K. 1965. Studies on the media for orchid seed germination. *Memoires Faculty Agri. Kagawa Univ.*, 20: 1-68.

Kerbauy G. B. and W. Handro. 1981. Culture of orchid embryo in

ANUPRABHA AND PATHAK - GREEN POD CULTURE

liquid medium. *Orchid Rev.*, **89**(36) : 316-18.

Krishna Mohan, P.T. and S. M. Jorapur. 1986. *In vitro* seed culture of *Acampe praemorsa* (Roxb.) Blatt. and McC. In: *Biology, Conservation, and Culture of Orchids* (ed. S.P. Vij) pp. 437-39. Affiliated East West Press, New Delhi, India.

Mahant, K.C. 1991. *Green Pod Culture and Regeneration Potential in Some Indian Orchids: A study In Vitro*. Ph.D. Thesis, Panjab University, Chandigarh, India.

Mead, J. W. and C. Bulard. 1979. Vitamins and nitrogen requirements of *Orchis laxiflora* Lamk. *New Phytol.*, **83**: 129-36.

Mitra, G.C. 1986. *In vitro* culture of orchid seeds obtaining seedlings. In: *Biology, Conservation, and Culture of Orchids* (ed. S.P. Vij) pp. 401-12. Affiliated East-West Press, New Delhi, India.

Mitra, G.C., R.N. Prasad, and A. Roy Chowdhury. 1976. Inorganic salts and differentiation of protocorms in seed callus of an orchid and correlated changes in its free amino acid content. *Indian J. Exp. Biol.*, **14**: 350-51.

Miyazaki, S. and T. Nagamatsu. 1965. Studies on the promotion of early growth *in vitro* of orchids. *Pt. Agri. Bull. Saga. Univ.*, **21**: 131-49.

Pathak, Promila. 1989. *Asymbiotic Germination and Clonal Propagation of Some Commercially Important and Endangered Orchids of India using Tissue Culture Techniques*. Ph. D. Thesis, Panjab University, Chandigarh, India.

Pathak, Promila, K. C. Mahant, and A. Gupta. 2001. *In vitro* propagation as an aid to conservation and commercialization of Indian orchids: seed culture. In : *Orchids: Science and Commerce* (eds. P Pathak, R. N. Sehgal, N. Shekhar, M. Sharma, A. Sood) pp. 451-58. Bishen Singh Mahendra Pal Singh, Dehradun, India

Pathak, Promila, S.P. Vij, and K.C. Mahant. 1992. Ovule culture in *Goodyera biflora* (Lindl.) Hk. f.: A study *in vitro*. *J. Orchid Soc. India*, **6**: 49-53.

Pathak, Promila, H. Piri, S. P. Vij, K.C. Mahant, and S. Chauhan. 2011. *In vitro* propagation and mass scale multiplication of a critically endangered epiphytic orchid, *Gastrochilus calceolaris* (Buch.-Ham ex J. E.Sm.) D.Don. using immature seeds. *Indian J. Exp. Biol.*, **49**: 711-16.

Piri, H., Promila Pathak, and R.K. Bhanwra. 2013. Asymbiotic germination of immature embryos of a medicinally important epiphytic orchid *Acampe papillosa* (Lindl.) Lindl. *African Journal of Biotechnology*, **12**(22): 162-67.

Prasad, R.N. and G.C. Mitra. 1975. Nutrient requirements for germination of seeds and development of protocorms and seedlings of *Cymbidium* in aseptic culture. *Indian J. Exp. Biol.*, **13**: 123-26.

Sagawa, Y. 1963. Green pot cultures. *The Florida Orchidist*, **6** : 296-97.

Sharma, S.K. and P. Tandon. 1986. Influence of growth regulators on asymbiotic germination and early seedling development of *Coelogyne punctulata* Lindl. In: *Biology, Conservation and Culture of orchids* (ed. S.P. Vij) pp. 441-51. Affiliated East-West Press, New Delhi, India.

Sood, A. 1984. *In Vitro Seed Germination, Clonal Propagation, and Cytological Studies in Some Indigenous Orchid Taxa of Ornamental Value*. Ph. D. Thesis, Panjab University, Chandigarh, India.

Temjensangba and C.R. Deb. 2006. Effect of different factors on non-symbiotic seed germination, formation of protocorm-like bodies and plant morphology of *Cleisostoma racemiferum* (Lindl.) Garay. *Indian Journal of Biotechnology*, **5**: 223-28.

Van Waes, J.M. and P.C. Debergh. 1986. *In vitro* germination of some western european orchids. *Physiol. Plant.*, **67**: 253-61.

Vij, S.P. and Promila Pathak. 1988. Asymbiotic germination of the saprophytic orchid, *Cymbidium macrorhizon*: A study *in vitro*. *J. Orchid Soc. India*, **6**: 49-53.

Vij, S.P., A. Sood, and K.K. Plaha. 1981. *In vitro* seed germination of some epiphytic orchids. In: *Contemporary Trends in Plant Sciences* (ed. S.C. Verma) pp. 473-81. Kalyani Publishers, New Delhi, India.

Withner, C.L. 1959. Orchid physiology. In: *The Orchids: A Scientific Survey* (ed. C.L. Withner) pp. 315-60. Ronald Press, New York.

Yam, T. W. and M. A. Weatherhead. 1988. Germination and seedling development of some Hong Kong orchids. I. *Lindleyana*, **3**: 156-60.

Yam, T. W., J. Arditti and M. A. 1989. The use of darkening agent in seed germination and tissue culture media for orchids : A review. *J. Orchid Soc. India*, **3** : 35-39.