

## RHIZOCTONIA: A GENUS OF ORCHID SYMBIANTS

P Kaushik and Pallavi Pal

Department of Botany and Microbiology  
Gurukul Kangri University, Haridwar - 249 401, Uttrakhand, India

### Abstract

The present paper deals with the study of genus *Rhizoctonia*, the orchid symbiont which includes the pathogenicity as it is the main causal organisms of various crop plants like alfalfa, soyabean, lima bean, peanut, papaya, cucumber, corn and eggplant. Besides its pathogenic nature it is mycorrhizal with many plants specially with orchids. The seeds of orchids are very minute without any reserved food and the fungus helps them in germination. The fungi provide phosphate, minerals, vitamins, exogenous carbon sources and other growth factors showing the dependence on mycorrhizal partner for completing the life cycle. Identification features, classification and cultural characteristics of various species of *Rhizoctonia* have also been described here.

### Introduction

RHIZOCTONIA IS the name given to a collection of basidiomycetaceous fungal taxa that includes plant pathogenic and mycorrhizal species. The genus *Rhizoctonia* which was erected by deCandolle in 1815 to accommodate the non-sporulating root pathogens contains over 100 species. Unfortunately the lack of more specific characters has led to the classification of a mixture of unrelated fungi as *Rhizoctonia* species (Moore, 1987; Parameter and Whitney, 1970). The genus has geographical spread from the sub-arctic to the tropics. *Rhizoctonia solani* [teleomorph *Thanatephorus cucumeris* (Frank) Donk], the most widely recognized species of *Rhizoctonia* was originally described by Julius Kuhn on potato in 1858.

The members of family Orchidaceae are widely associated with the different species of *Rhizoctonia* which aid orchid seed germination in nature.

*Rhizoctonia solani* does not produce any asexual spores (conidia) and only occasionally produces sexual spores (basidiospores). Unlike many basidiomycete fungi, the basidiospores are not enclosed in a fleshy, fruiting body. The sexual stage of *Rhizoctonia solani* has undergone several name changes since 1891, but is now accepted as *Thanatephorus cucumeris*.

*Rhizoctonia solani* is called a 'species complex' because it contains many related but genetically isolated sub specific groups (Adams and Butler, 1979; Anderson, 1982; Ogoshi, 1987). Major sub specific groups of *Rhizoctonia solani* traditionally have been identified on the basis of hyphal anastomosis reaction and are called anastomosis groups (AG) (Carling, 1996; Carling et al., 1999). Fungi in the *Rhizoctonia* complex can be divided into two groups i.e. the multinucleate and the binucleate taxa. The multinucleate genera include *Thanatephorus*

and *Waitea*, and the binucleate, *Athelia*, *Botryobasidium*, *Ceratobasidium*, and *Uthatobasidium*. Although all species of *Thanatephorus* and *Waitea* belong basically to the multinucleate group (Flentje et al., 1963), the number of nuclei in cells vary from species to species and even among isolates (Butler and Bracker, 1970; Parmeter et al., 1967).

### *Rhizoctonia solani*: A Plant Pathogen

*Rhizoctonia solani* is a major pathogen of cereal and pasture crops causing several diseases, the most serious of which is the bare patch disease. This disease is characterized by patches of stunted growth, yellow leaves and reduced root system (Weller et al., 1986). The fungus exists in various pathogenic forms that are able to cause disease on a wide number of plant species. It causes diseases named damping-off in radish, wheat and cotton (Ichielevich-Auster et al., 1985). This disease has also been reported in longleaf pine, soybean and peas too (English et al., 1986; Liu and Sinclair, 1991; Shehata et al., 1981).

*Rhizoctonia solani* (AG-1) causes sheath and web blight disease of rice in most growing countries (Ogoshi, 1987; Zuber and Manibhusanrao, 1982). Isolates of AG-2 cause root canker in crucifers (Anderson, 1982). A number of isolates from AG-2 are reported to cause crown and root rot in soyabean (Liu and Sinclair, 1991). Seed and hypocotyls rot disease caused by *Rhizoctonia solani* (AG-4) isolates are serious diseases of leguminous plants (Anderson, 1982). *Rhizoctonia solani* primarily attacks below ground plant parts such as seeds, hypocotyls and roots, but is also capable of infecting above ground plant parts (Petkowski and deBoer, 2001).

Several species of *Rhizoctonia* have been reported as pathogens on ornamentals. Ornamental diseases caused by *Rhizoctonia solani* include pre-emergence

and post-emergence damping-off, web blight, stem rot and foliar blight. Disease development starts from the soil debris of the plant, survival of sclerotia and the mycelium of *Rhizoctonia solani* grows rapidly and utilizes the organic matter which plays a key role in disease development.

Very less information is available on characterization of ornamental isolates. Chase (1991) studied 309 isolates of *Rhizoctonia* sp. from ornamentals in Florida, U.S.A and found 129 multinucleate and 180 binucleate isolates; 36% multinucleate isolates were from roots, 24% from stems, and 40% from leaves.

Some of the ornamentals infected by *Rhizoctonia solani* belong to the genera, *Acacia*, *Aconitum*, *Ageratum*, *Aloe*, *Amaranthus*, *Avena*, *Asparagus*, *Bauhinia*, *Brassica*, *Bougainvillea*, *Calendula*, *Capsicum*, *Cassia*, *Cissus*, *Citrus*, *Coffea*, *Crotalaria*, *Cycas*, *Cymbidium*, *Dahlia*, *Datura*, *Equisetum*, *Euphorbia*, *Ficus*, *Helianthus*, *Hibiscus*, *Ilex*, *Ipomoea*, *Jasminum*, *Laeliocattleya*, *Lantana*, *Limonium*, *Lotus*, *Mentha*, *Nerium*, *Ocimum*, *Phalaenopsis*, *Punica*, *Saxifraga*, *Salvia*, *Solanum*, *Tagetes*, *Taxus*, *Thuja*, *Valeriana*, *Viola* and *Zingiber*.

### **Rhizoctonia Species Associated with Orchids**

Link (1840) was the first person who recorded the hyphal structures in the cells of an orchid seedling. Reissek (1847) also made an attempt to illustrate the presence of fungi in orchid roots. A functional relationship (mutualistic) between orchid nutrition and the presence of endophytic hyphae was first suggested by Frank (1891). However, the importance of fungi in orchid seed germination was realized following the pioneer work of Bernard (1903), who successfully germinated orchid seeds by infecting with suitable fungus.

Orchid seeds are microscopic and have no reserved food material thus in nature, orchids utilize the mycorrhizal fungi to initiate the seed germination and for the growth of seedling (Andersen and Rasmussen, 1996; Currah et al., 1997; Kaushik, 1988; Peterson et al., 1990; Vij, 1986). The fungi provide phosphate, minerals, vitamins, exogenous carbon sources and other growth factors showing the dependence on mycorrhizal partner for completing the life cycle (Smith and Read, 1997).

A large number of fungal partners in orchid mycorrhizae belong to the genus *Rhizoctonia* (Burgeff, 1936; Warcup and Talbot, 1967, 1980). These includes *Rhizoctonia goodyerae-repentis* isolated from *Goodyera repens* and *Rhizoctonia solani* from *Dactylorhizis purpurella* (Downie, 1957, 1959; Masuhara et al., 1993). Fungi in *Rhizoctonia* do not have asexual spores but they share some unique vegetative characteristic (Mordue et al., 1989); sclerotia

have been observed in culture in some strains, but monilioid cells that are considered to be the precursors of sclerotia are always present.

Saksena and Vaartaja (1960) carried out the study on the forest nursery plants and isolated four new species *Rhizoctonia dichotoma*, *Rhizoctonia endophytica*, *Rhizoctonia globularis* and *Rhizoctonia hiemalis*). In another research, they reported another six species (*Rhizoctonia callae*, *Rhizoctonia repens*, *Rhizoctonia lilacina*, *Rhizoctonia rubiginosa*, *Rhizoctonia solani*, and *Ceratobasidium praticola*) from the forest nursery plants (Saksena and Vaartaja, 1961).

Wolff (1926) and Burgeff (1932, 1936) *Rhizoctonia repens* from *Laeliocattleya canhamina*. *Rhizoctonia lanuginosa* from *Odontoglossum grande*, *Rhizoctonia mucoroides* from *Phalaenopsis amabilis*, *Rhizoctonia neottiae* from *Neottia nidus-avis*, *Rhizoctonia aerea* from *Taeniophyllum*, *Rhizoctonia floccosa* from *Orchis maculata*, *Rhizoctonia asclerotica* from *Ophrys apifera*, *Rhizoctonia gracilis* from *Oncidium sphacelatum*, *Rhizoctonia robusta* from *Oncidium cavendishianum*, *Rhizoctonia sclerotica* from *Ophrys muscifera*, *Rhizoctonia stahlii* from *Platanthera chlorantha*, and *Rhizoctonia subtilis* from *Lycaste skinneri*.

Hyphomycetes that were able to produce conidia have also been isolated from orchid roots (Currah et al., 1987, 1990; Richardson et al., 1993). Among many bracket fungi that have been reported are *Armillaria mellea*, *Favolaschia dybowskiana*, *Fomes* sp., *Hymenochaete* sp., *Marasimus coniatus*, and *Xerotus javanicus* (Burgeff, 1932, 1936; Hamada, 1940; Hamada and Nakamura, 1963; Jonsson and Nylund, 1979; Kusano, 1911). Kusano (1911) and Ramsbottom (1922) studied details of orchid mycorrhiza. Mehra and Nath (1974) studied mycorrhiza in the roots of *Zeuxine strateumatica* L. and also proved experimentally that the association of mycorrhiza was essential for germination of orchid seeds.

Vij and Sharma (1983) surveyed 39 North Indian orchid species and reported that these harboured an endotrophic and intracellular fungus in one or more of their organs in the adult phase. Roots were the most frequently infected organs; the fungi repeatedly entered the roots through epiblema (velamen) cells and penetrate the deeper tissues through comparatively thin walled cells by developing fungal pegs. In *Aerides multiflora*, the fungus enters the root through root hairs as well. Ten fungus species were isolated 8 belonging to *Rhizoctonia* and 2 to *Fusarium*. Kaushik (1983) also observed formation of intracellular pelotons in *Cephalantheropsis gracilis* velamen and cortical cells, and intercellular hyphae in roots of several other orchids.

Rajkumar and Kaushik (2007) attributed the penetrative ability of *Rhizoctonia solani* to all three components of cellulose complex causing solubilization of the host cell wall.

Currah *et al.* (1987) isolated pure cultures of endophytic fungi that were obtained from the mycorrhizae of some native Alberta orchids. *Amerorchis rutundifolia*, *Calypso bulbosa*, *Coeloglossum viride*, *Corallorrhiza maculata*, *Platanthera dilatata*, *P. hyperborea*, *P. obtusata* the fungi isolated by them were *Rhizoctonia repens*, *R. anaticula*, *Ceratobasidium obscurum* and *Leptodontidium orchidicola* respectively. One conidial isolate was identified as *Trichocladium opacum* two isolates resembling *Rhizoctonia* in cultural features, sporulated and are described as *Trichosporiella multisporum*.

Kaushik *et al.* (1987) reported species of *Rhizoctonia* as fungal endophyte from four different orchids *i.e.* *Epipactis*, *Calanthe*, *Aerides* and *Vanda* former two are terrestrial and latter are epiphytic. *Rhizoctonia solani*, *R. dichotoma*, *R. repens* and *R. dichotoma* are the endophytic fungi associated with above orchids.

In another research Currah (1987) isolated new species of *Thanatephorus pennatus* from the mycorrhizal roots of *Calypso bulbosa*, *Thanatephorus pennatus* is easily distinguished from other species in the genus by characteristics of the basidia, globose basidiospores and growth pattern on agar medium. Currah *et al.* (1990) studied the seasonal development and mycorrhizal fungi of the mycorrhizae of orchids *i.e.* *Coeloglossum viride*, *Platanthera hyperborea*, *P. obtusata*, *P. orbiculata*. Fungal endophytes belonging to the taxa were *Ceratobasidium goodyerae repens*, *Epulorhiza anaticula* comb. nov., *E. repens*, and *Leptodontidium orchidicola*. A series of isolates bearing clamped monilioid cells and belonging to an unidentified species of *Sistotrema* was found in *Platanthera obtusata*. This is the first report of a *Sistotrema* species from orchid mycorrhiza.

Warcup and Talbot (1966, 1967, 1971 and 1980) identified large numbers of teleomorphs of *Rhizoctonia* species associated with orchids. The Fungi isolated are *Ceratobasidium angustisporum*, *C. cornigerum*, *C. globisporum*, *C. sphaerosporum*, *C. obscurum*, *C. papillatum*, *Thanatephorus cucumeris*, *T. orchidicola*; *T. sterigmaticus*, *Tulasnella allantospora*, *T. asymmetrica*, *T. calospora*, *T. cruciata*, *Tulasnella violea*, *Ypsilonidium anomalum*, *Y. langleiregis*, and *Y. sterigmaticum*.

Roberts (1999) lists out fifteen species with *Rhizoctonia* anamorphs that are known to be orchid symbionts. Five species of *Ceratobasidium*, three species of *Thanatephorus*, one species of *Serendipta* (*Sebacina*) and *Oliveonia* and five species of *Tulasnella*. Then all

belong in Heterobasidiomycetes. Agaricaceae are represented among orchid symbionts by *Armillaria* (Cham and Igarishi, 1996; Lan *et al.*, 1994; Terashita, 1996) and *Mycena* (Fan *et al.*, 1996; Lan *et al.*, 1996). Hericiaceae and Thelephoraceae are represented by *Russulaceae* and *Thelephoraceae* (McKendrick *et al.*, 2000; Taylor and Bruns, 1997) and Hymenochaetaceae by *Erythromyces* (Umata, 1995).

### ***Rhizoctonia: Mycorrhizal Association with other Plant Species***

In the family Gentiaceae most species host mycorrhizal fungi, and many species show similarities to the orchids with regard to seed size (Harley, 1969). Neumann (1934) investigated the mycorrhiza of some Gentiana species and concluded that the mycorrhiza was of orchid type and the fungus isolated belonged to *Rhizoctonia*. Species belonging to the Burmanniaceae and Triuridaceae have been reported to form mycorrhiza with *Rhizoctonia* (Harley, 1969). Stahl (1949) isolated a number of *Rhizoctonia* strains from the moss, and referred them to the taxa as described by Burgeff (1932, 1936). Fungi *Rhizoctonia pini-insignis* isolated from roots of *Pinus radiata* Don., may be involved in a mycorrhizal relationship as it improved growth of the plants. In bryophyte *Aneura* (Rayner, 1927; Stahl, 1949) in this both achorophyllous and green species form mycorrhiza with *Rhizoctonia*. It would be worthwhile to clarify that *Cryptothallus mirabilis* known to be the only achorophyllous bryophyte (a liverwort) has recently been transferred to *Aneura mirabilis* because of molecular and morphological features.

### **Classification and Identification of *Rhizoctonia***

The genus *Rhizoctonia* was established by de Candolle, by including *Rhizoctonia crocorum* DC: Fr. The isolation and identification of orchid mycorrhizal fungi are of importance to the understanding of the orchid fungus relationship. Unfortunately the lack of more specific features led to the classification of a mixture of unrelated fungi as *Rhizoctonia* species (Moore, 1987; Parmeter and Whitney, 1970).

The most widely studied species of *Rhizoctonia* is *Rhizoctonia solani* Kuhn which is associated with a teleomorph *Thanatephorus cucumeris* (Frank) Donk (Talbot, 1970; Tu and Kimbrough, 1978). The most useful system for classification of fungi in the *Rhizoctonia solani* complex is based largely on anastomosis grouping (AG) (Carling, 1996; Ogoshi, 1987).

Bernard (1909) referred the orchid endophytes to *Rhizoctonia* in describing the three species *Rhizoctonia repens*, *R. mucoroides* and *R. lanuginosa*. Other anamorphic species occurring as orchid endophytes

were described by Burgeff (1932, 1936); Costantin and Dufour (1920) and Curtis (1939).

The genus represents an assemblage of taxonomically diverse groups that differ in many features like anamorph and teleomorph stages (Curtis, 1939; Currah et al., 1987). The current species concept stipulates that isolates of *Rhizoctonia solani* stand distinguished in having, multinucleate cells in young vegetative hyphae; dolipore septa; branching near the distal septum of cells in young vegetative hyphae; hypha has some shades of brown; and constriction of hyphae and formation of septa at a short distance from the point of origin of hyphal branches (Parmeter and Whitney, 1970). They however, lack pigments other than brown; conidia; clamp connections; differentiated into rind and medulla; and rhizomorphs.

#### Classification

The classification of *Rhizoctonia* species has evolved mainly from the studies of isolates that are isolated from the plants that are suffering from diseases. *Rhizoctonia* species consists of a large variety of teleomorphs that belong to different families, classes and orders. The teleomorphs of *Rhizoctonia* are referred to the Subdivision- Basidiomycotina, Class- Hymenomycetes, Subclass- Holobasidiomycetidae or Phragmobasidiomycetidae (Sneh et al., 1991).

The conventional method of identifying these fungi has been based on their cultural characteristics like colony colour, chains of monilioid cells, mycelium characteristics and sclerotia (Curtis, 1939; Currah et al., 1987). Monilioid cells are also known as monilia (Burgeff, 1932, 1936), monilioid cells (Butler and Bracker, 1970; Duggar and Stewart 1901), chlamydospores (Sappa and Mosca, 1954; Saksena and Vaartaja, 1960) spores (Curtis, 1939), pseudospores (Crandall and Arillaga, 1955) or doliform cells, barrel shaped cells, short cells or sclerotia cells (Butler and Bracker, 1970).

Ruhland (1908) took special note on the monilioid cells of a *Rhizoctonia* like fungus from Germany and erected a new genus *Moniliopsis* to include the fungus under the name *Moniliopsis aderholdi*. *Moniliopsis* was later considered identical with *Rhizoctonia solani* (Duggar, 1915; Schultz, 1937) and it was proposed that the genus *Moniliopsis* be merged with *Rhizoctonia*.

Morphologically *Rhizoctonia* can be classified on the basis of nuclei present in young cells (Sneh et al., 1991). The important plant pathogenic species complex include *Rhizoctonia solani* (teleomorphs: *Thanatephorus*, Ceratobasidiales) and *Tulasnella* (Tulasnellales). The uninucleate strains occur in anamorphs of *Ceratobasidium* (Hietala et al., 2001) but have rarely

been reported (Hietala, 1997). Multinucleate, binucleate and uninucleate cells occurs. *Rhizoctonia solani* has multinucleate cells. *Ceratobasidium* and *Tulasnella* possess binucleate cells. Anamorph *Ceratobasidium* has uninucleate cells.

Anastomosis grouping (AG) is a way to classify these fungi. When two isolates belong to the same AG their hyphae are able to fuse. The *Rhizoctonia solani* (Multinucleate) AGs known to be associated with orchids are AG-6 and AG-12 (Carling 1996; Carling et al., 1999). Uninucleate *Rhizoctonia* species include only one AG. Binucleate *Rhizoctonia* species has 21 AG and multinucleate *Rhizoctonia* species has 13 AGs. AG has been identified in relation to many diseases.

Isolates of certain AG was found to infect many host plants, while those of other AG has rather limited host range. AG-1 and its subgroups infect many different crops. The most important disease caused by isolates of the AG-2 and its subgroups infect sugar beet, rice and corn. Isolates of AG-3 causes the black scurf disease on potato tubers. AG-4 group has wide host range like onion and cotton. AG-8 causes the bare patch disease on wheat and barley. Isolates of other anastomosis groups may be weakly pathogenic on several plants or not pathogenic at all, such as AG-6 which is non-pathogenic. Certain isolates are capable to form mycorrhizal association with orchids (Ogoshi, 1996).

AG-5 and AG-6 have been isolated from orchids and it has been shown that all AG of *Rhizoctonia solani* can potentially form mycorrhizal association (Masuhara et al., 1993). Several new isolates of multinucleate *Rhizoctonia* may be found to be involved in orchid mycorrhizal association.

Moore (1987) assigned doliporous *Rhizoctonia* like fungi into the groups namely *Ceratobasidium*, *Epulorhiza* and *Moniliopsis* according the cell nuclear and septal pore apparatus and teleomorph. The members of *Rhizoctonia* complex are assigned to the Ascomycetes. Characteristic features are transparent septa with large central pores and the presence of woronin bodies. Holobasidiomycetes have dolipore septa with parenthesomes that are perforate. Basidiomycetes have three layered septa. The four main genera represented are *Ceratobasidium* Rogers (e.g. *Rhizoctonia endophytica* var. *endophytica* Saksena and Vaartaja and *Rhizoctonia cerealis* E.P.Hoeven), *Thanatephorus* Donk (includes the teleomorph of e.g. *Rhizoctonia solani*), *Tulasnella* J. Schrot (e.g. *Rhizoctonia repens* Bernard) and *Waitea* (Warcup and Talbot, P.H.B. (e.g. *Rhizoctonia zeae* Voorhees). A major taxonomic feature of the anamorph that separates the former and latter two

genera is the respective presence of multinucleate and binucleate cells in young vegetative hyphae (Sneh et al., 1991).

The perfect stage is known for a few species. The history of the taxonomy and synonymy of the perfect stage, *Ceratobasidium filamentosum*, of *Rhizoctonia solani* and *Rhizoctonia microsclerotia* is given by Rogers (1943) and Olive (1957). *Rhizoctonia crocorum* is shown to be the imperfect form of *Helicobasidium purpureum* (Tul.) Pat. Some strains of *Rhizoctonia bataticola* (Taub.) Butl. produce the pycnidia of *Macrophomina phaseoli* (Maulb.) Ashby (1927). Parmeter et al. (1967) isolated a number of fungi of genus *Rhizoctonia* that are associated with orchid root. They describe that *Rhizoctonia solani* comprised of number of taxonomic species showing the various teleomorphic states. *Rhizoctonia crocorum* is the anamorph of *Helicobasidium brebisonii*. *Thanatephorus cucumeris* is the teleomorph of *Rhizoctonia solani*. *Tulasnella* is the teleomorphs of *Rhizoctonia repens* the anamorph of *Ceratobasidium* assign to the new genus *Ceratorhiza*. *Macrophomina phaseolina* is the perfect stage of *Rhizoctonia bataticola* Tassi (Goid).

Roberts (1999) summarized the *Rhizoctonia* forming fungi and assigned *Sebacina* and *Opadorhiza* to Exidiales. *Tulasnella* to Tulasnellales, and *Thanatephorus*, *Ceratobasidium* and *Waitea* to Ceratobasidiales and *Helicobasidium* (*Thanatophytum*) to Platygloeales.

*Epulorhiza* one of the most common genera forming mycorrhizas with terrestrial orchids but it is least studied (Currah and Zelmer, 1992). Five species of *Epulorhiza* have been identified on morphological and cultural characters like shape and dimension of monilioid cells. Species are *Epulorhiza repens* (Moore, 1987), *E. albertensis* (Currah et al., 1990; Currah and Sherburne, 1992), *E. anaticula* (Currah et al., 1990), *E. calendulina* (Zelmer and Currah, 1995) and *E. inquilina* (Currah et al., 1997). Besides these six species of *Tulasnella* with a *Rhizoctonia* anamorph have been found to be orchid mycobiont. *Sebacina vermifera* (Warcup, 1988), *Tulasnella allantospora*, *T. assymmetrica*, *T. calospora*, *T. cruciata*, *T. irregularis* and *T. violea* (Warcup and Talbot, 1971).

The genus *Rhizoctonia* contains nearly 87 species. These are *R. alba*, *R. allii*, *R. alpina*, *R. anaticula*, *R. anomala*, *R. apocynacearum*, *R. arachnion*, *R. asclerotica*, *R. aurantiaca*, *R. batatas*, *R. bataticola*, *R. betae*, *R. bicolor*, *R. brassicarum*, *R. callae*, *R. candida*, *R. carotae*, *R. cavendishiana*, *R. centrifuga*, *R. crocorum*, *R. dauci*, *R. destruens*, *R. dichotoma*, *R. dimorpha*, *R. endophytica* var. *endophytica*, *R. endophytica* var. *filicata*, *R. ferruginea*, *R. floccosa*, *R. fragariae*, *R. fraxini*,

*R. fuliginea*, *R. fumigata*, *R. fusca*, *R. globularis*, *R. goodyerae-repentis*, *R. gossypii* var. *anatolica*, *R. gracilis*, *R. grisea*, *R. lanuginosa*, *R. leguminicola*, *R. lilacina*, *R. lupini*, *R. macrosclerotia*, *R. mali*, *R. medicaginis*, *R. menthae*, *R. microsclerotia*, *R. moniliformis*, *R. monteithiana*, *R. mucoroides*, *R. munera*, *R. muscorum*, *R. napi*, *R. neottiae*, *R. orobanches*, *R. oryzae-sativae*, *R. papaya*, *R. pini-insignis*, *R. potomacensis*, *R. praticola*, *R. quercina*, *R. quercus*, *R. radiciformis*, *R. ramicola*, *R. rapae*, *R. repens*, *R. robusta*, *R. rubi*, *R. rubiginosa*, *R. silvestris*, *R. solani*, *R. solani* var. *cedri-deodarae*, *R. solani* var. *fuchsiae*, *R. sphacelati*, *R. stahlii*, *R. strobi*, *R. strobilina*, *R. subtilis*, *R. tabifica*, *R. tomato*, *R. tricolor*, *R. tuliparum*, *R. violacea*, and *R. dauci*. Cultural characteristics of some of *Rhizoctonia* and allied species are as follows:

#### *Ceratobasidium obscurum*

On PDA medium, growth rate approx 0.2 mm/h. Mycelial mat low, plane, pale cream yellow becoming pale orange yellow and densely cottony after several months hyphae 4-6  $\mu\text{m}$ , diameter, thin walled with dolipore septa, lacking clamp connections binucleate (Rogers, 1935).

#### *Epulorhiza anaticula*

Hyphae hyaline with constricted branch points, 2.5-7  $\mu\text{m}$  diameter. Submerged growth in PDA, CMA. Ellipsoid or globose or irregular monilioid cells, 10-20  $\mu\text{m}$ , colony creamy white to pale tan or orange rubbery or leathery in appearance and texture (Currah, 1987).

#### *Moniliopsis anomala*

On PDA medium, colonies 8 cm diameter, after 10 days. After 48 days mycelium partly submerged, aerial mycelium pale brown to white scattered, felted tufts, center dark reddish in brown. Sclerotia numerous in scattered clusters (Burgeff, 1936).

#### *Rhizoctonia anaticula*

On PDA medium, aerial mycelium thin, dense, cream, margin submerged, appearing glabrous, growth. On CMA mycelium submerged, sparse, white, runner hyphae, sclerotia minute. Monilioid cells thin walled, broadly ellipsoidal to clavate (Currah, 1987).

#### *Rhizoctonia borealis*

Mycelium at first light tan, later dark brown, sporodochia numerous, up to 3mm in diameter, distinct from the rapidly growing mycelium. Spores clostridium like 37-42  $\mu\text{m}$  by 24-28  $\mu\text{m}$  (Burgeff, 1936).

*Rhizoctonia callae*

On PDA medium, the colony is white, later cream yellow with low growth of colony aerial mycelium. Vegetative hyphae are septate hyaline becoming brownish, branching at near right angle. The hyphae are 3-4.5  $\mu\text{m}$  wide and frequently anastomosed. The chlamydospores are hyaline, brown in mass, ovoid to doliform, 16-22  $\mu\text{m}$  11-15  $\mu\text{m}$  (Castellani, 1934).

*Rhizoctonia cerealis*

Colonies are of white to light brown shade on the PDA, zonation absent. Monilioid cells 15-30  $\mu\text{m}$  7-12  $\mu\text{m}$ . Sclerotia white to brown (Boerma and Verhoeven, 1977).

*Rhizoctonia dichotoma*

Mycelium is white in mats, hyphae branched, septate, walled smooth, moniliiform, sporodochia white when young and becomes pale to brown during maturity, monilioid cells 20-24  $\mu\text{m}$  by 8-12  $\mu\text{m}$  (Saksena and Vaartaja, 1961).

*Rhizoctonia globularis*

Mycelium white in mats, hyphae branched, septate, walls smooth, aerial hyphae dichotomously branched, moniliiform, sexual organs are not present. Monilioid cells measure 11.3-13.7  $\mu\text{m}$  by 6.3-7.5  $\mu\text{m}$  (Saksena and Vaartaja, 1961).

*Rhizoctonia gracilis*

Mycelium white. Sporodochium yellow, waxy, and elongate in shape, only slightly greater in diameter than the vegetative hyphae (Burgeff, 1936).

*Rhizoctonia hiemalis*

Mycelium is white in mats, hyphae branched, thin, septate, walls smooth, aerial branches monilioid at maturity, sporodochium of many short, branched monilioid hyphae, chlamydospores hyaline, thick walled, 3-8 in each hypha, full of granular material at maturity, sexual reproductive bodies are absent (Saksena and Vaartaja, 1961).

*Rhizoctonia lanuginosa*

Mycelium is white, sporodochium yellowish, waxy, spores elongate, widest beyond the middle (Burgeff, 1936).

*Rhizoctonia monilioides*

Cottony aerial hyphae appear on agar medium. Sporodochia absent. Spores in chains 10-14  $\mu\text{m}$  by 7-10  $\mu\text{m}$ . Growth in liquid culture similar to that of *Rhizoctonia repens* (Burgeff, 1936).

*Rhizoctonia neottiae*

Sporodochia are dark red brown, large, open textured. Hyphae coarse, 9-10  $\mu\text{m}$  in diameter. Spores elongate 74-80  $\mu\text{m}$  by 19-22  $\mu\text{m}$  (Burgeff, 1936).

*Rhizoctonia oryzae-sativae*

White to yellowish colonies come on PDA, monilioid cells 21-37  $\mu\text{m}$  to 6-11  $\mu\text{m}$ , sclerotia irregularly globose in shape (Mordue, 1989).

*Rhizoctonia ramicola*

Olivaceous grey to purple brown colonies are formed on PDA, monilioid cells and sclerotia are absent. Hyphae measures 3.7-9.9  $\mu\text{m}$  (Tu and Kimbrough, 1975).

*Rhizoctonia repens*

On PDA medium, colonies are 5-7cm diameter, margin submerged, entire, glabrous, and white to cream. Vegetative mycelium mostly growing beneath the surface of agar media. Aerial mycelium sparse forming in irregular, low, cream to yellowish patches. On CMA mycelium nearly completely submerged white to cream. Sclerotia minute undifferentiated loosely arranged clusters of monilioid cells. Vegetative hyphae septate hyaline, constricted at branch points. Monilioid cells thin walled, hyaline, and ellipsoidal to nearly spherical (Bernard, 1909).

*Rhizoctonia sclerotica*

Mycelium white when young, light brown at maturity, basal hyphae branched, septate, smooth, aerial hyphae rich in granular contents (4-8  $\mu\text{m}$ ), moniliiform at maturity. Sporodochium comprised of loosely or compactly arranged monilioid hyphae, white when young, and brown at maturity. Conidia are not formed (Burgeff, 1936).

*Rhizoctonia stahlii*

Aerial hyphae are white, abundant. Sporodochia yellow, large, open textured, not waxy, mostly 1 mm. or less in diameter. Spores elongate 26-34  $\mu\text{m}$  by 14-18  $\mu\text{m}$  (Burgeff, 1936).

*Rhizoctonia subtilis*

Mycelium at first light tan, later becoming uniform light brown, recumbent, smooth, glistening. Sporodochia small confluent over surface of mycelium. Spores in irregular pattern (Burgeff, 1936).

*Rhizoctonia solani*

On PDA medium, the colony is brown with felty and cottony, brown, aerial hyphae. The vegetative hyphae

are septate, hyaline at first, later brown, branching at right angles with a constriction at the point of branching and the first septum a few microns beyond the point of origin (Rajkumar and Kaushik, 2007; Saksena and Vaartaja, 1961).

#### *Thanatephorus pennatus*

On PDA medium, growth rate is slow, mycelial mat sparse and hyaline at first growing out in a feather like pattern, becoming camel brown, plane with abundant white to pale brown aerial hyphae in irregular floccose tufts. On CMA hyphae forming at the margin of the plate after 6-8 weeks incubation on CMA in the light, loose, white sclerotia 1-2 mm diameter (Currah, 1987).

#### *Tulasnella cucumeris*

Have large basidia (15-18  $\mu\text{m}$  by 8-10  $\mu\text{m}$ ) and oblong to ellipsoid basidiospores. The vegetative phase has a much faster growth rate and its formation of dark brown sclerotia (Downie, 1957).

#### *Tulasnella praticola*

Hyphae are upto 9  $\mu\text{m}$  in diameter, mycelium in culture which later greyish brown, basidiospores 7-9  $\mu\text{m}$  by 4-6  $\mu\text{m}$ , subhymenial branching often racemose (Sneh et al., 1991).

#### *Sebacina sp.*

On PDA medium, colonies measured 1.4 cm in diameter, aerial mycelium, felty downy, margin submerged, runner hyphae 5  $\mu\text{m}$  by 7.5  $\mu\text{m}$  diameter, quickly giving rise to short swollen segments that become monilioid cells. Sclerotia numerous cream, submerged (Currah et al., 1990).

### References

Adams, G.C. and E.E. Butler. 1979. Serological relationships among anastomosis groups of *Rhizoctonia solani*. *Phytopathology*, 69: 629-33.

Andersen, N.A. 1982. Genetics and pathology of *Rhizoctonia solani*. *Ann. Rev. Phytopathol.*, 20: 329-47.

Andersen, T.F. and H.N. Rasmussen. 1996. The mycorrhizal species of *Rhizoctonia*. In: *Rhizoctonia Species, Taxonomy, Molecular Biology, Ecology, Pathology and Disease Control* (eds. B. Sneh, S. Neate, G. Dijst and S. Jabaji) pp. 379-390. Kluwer Academic Publishers, Dordrecht, The Netherlands.

Ashby, S. F 1927. *Macrophomina phaseoli* (Maulb.) comb. nov. the pycnidial stage of *Rhizoctonia bataticola* (Taub.) Butl. *Trans. Brit. Mycol. Soc.*, 12: 141-47.

Bernard, 1899-1911 and Cf Rayner. 1922. *New Phytol*, 15: 246.

Bernard, 1909. *Die Wurzelpilze der Orchideen, ihre Kultur und ihre Leben in der Pflanze*. Gustav Fischer, Jena.

Boerma, G. H. and A. A. Verhoeven. 1977. Checklist for scientific names of common parasitic fungi. Series 26: Fungi on field crops: Cereals and grasses. *Neth. J. Plant Pathol.*, 83: 165-204.

Burgeff, H. 1932. *Saprophytismus und Symbiose*. Gustav Fischer, Jena.

Burgeff, H. 1936. *Samenkeimung der Orchideen*. Gustav Fischer, Jena.

Butler, E. E. and C. E. Bracker. 1970. Morphology and cytology of *Rhizoctonia solani*. In: *Rhizoctonia solani: Biology and Pathology* (ed. J.R. Parmeter) pp. 32-51. University of California Press, Berkeley.

Carling, D. E. 1996. Grouping in *Rhizoctonia solani* by hyphal anastomosis reaction. In: *Rhizoctonia species, Taxonomy, Molecular Biology, Ecology, Pathology and Disease Control* (eds. B. Sneh, S. Neate, G. Dijst and S. Jabaji) pp. 37-47. Kluwer Academic Publishers, Dordrecht, The Netherlands.

Carling, D.E., E.J. Pope, K.A. Brainhard, and D. A. Carter. 1999. Characterization of mycorrhizal isolates of *Rhizoctonia solani* from an orchid including AG-12, a new anastomosis group. *Phytopathology*, 89: 942-46.

Castellani, E. 1934. *Ann. R. Ist. Sup. Agrario e Forestale*, 5: 73.

Cha, J. Y. and T. Igarishi. 1996. *Armillaria jezoensis* a new symbiont *Galeola septentrionalis* (Orchidaceae) in Hokkaido. *Mycoscience*, 37: 21-24.

Chase, A.R. 1991. Characterization of *Rhizoctonia* species isolated from ornamentals in Florida. *Plant Disease*, 75: 234-38.

Costantin, J. and L. Dufour. 1920. *Sur la biologie du Goodyera repens*. *Rev. Gen. Bot.*, 32: 529-33.

Crandall, B.S. and J.G. Arillaga. 1955. A new *Rhizoctonia* from El Salvador associated with root rot of coffeea. *Mycologia*, 47: 403-07.

Currah, R.S. 1987. *Thanatephorus pennatus* sp. nov. isolated from mycorrhizal roots of *Calypso bulbosa* (Orchidaceae) from Alberta. *Canadian Journal of Botany*, 65: 2473-2482.

Currah, R.S., E.A. Smereciu, and S. Hambleton. 1990. Mycorrhiza and mycorrhizal fungi of boreal species of *Platanthera* and *Coeloglossum* (Orchidaceae). *Can. J. Bot.*, 68: 1171-1181.

Currah, R.S. and R. Sherburne. 1992. Septal ultrastructure of some fungal endophytes from boreal orchid mycorrhizas. *Mycological Research*, 96(7): 583-87.

Currah, R.S. and C. Zelmer. 1992. A key and notes for the genus of fungi mycorrhizal with orchids and a new species in the genus *Epulorhiza* species. *Mycotaxon*, 61: 335-42.

Currah, R.S., L.W. Zettler, and T.M. McInnis. 1997. *Epulorhiza inquilina* sp. nov. from *Platanthera* (Orchidaceae) and a key to *Epulorhiza* species. *Mycotaxon*, 61: 338-42.

Curtis, J.T. 1939. The relation of specificity of orchid mycorrhizal fungi to the problem of symbiosis. *Am. J. Bot.*, 26: 390-99.

de Candolle, A.P. 1815. *Memoire sur les rhizoctones, nouveau genre de champignons qui attaque les racines, des plantes et en particulier celle de la luzerne cultivee*. *Mem. Mus. D. Hist. Nat.*, 2: 209-16.

Downie, D.G. 1957. *Corticium solani* an orchid endophyte. *Nature*, 179: 160.

Downie, D.G. 1959. *Rhizoctonia solani* and orchid seed. *Trans. Bot. Soc. Edinb.*, **37**: 279-85.

Duggar, B.M. 1915. *Rhizoctonia crocorum* (Pers.) D.C. and *Rhizoctonia solani* Kuhn (*Corticium vagum* B and C.) with notes on other species. *Ann. Missouri Botanical Garden*, **2**: 403-58.

Duggar, B.M. and F.C. Stewart. 1901. The sterile fungus *Rhizoctonia* as a cause of plant diseases in America. N.Y. (Cornell) Agric. Exp. Stn. Bull., **186**: 51-76.

English, J.T., R.C. Ploetz, and E.L. Bernard. 1986. Seedling blight of longleaf pine caused by binucleate *Rhizoctonia solani* like fungus. *Plant Disease*, **70**: 148-50.

Fan, L., S. Guo, W. Cao, P. Xiao, J. Xu, L. Fan, S.X. Guo, W.Q. Cao, P.G. Xiao, and J.T. Xu. 1996. Isolation, culture, identification and biological activity of *Mycena orchidicola* sp. nov. in *Cymbidium sinense* (Orchidaceae). *Acta Mycol. Sin.*, **15**: 251-55.

Flentje, N.T., H.M. Stretton, and E.J. Hawn. 1963. Nuclear distribution and behaviour throughout the life cycles of *Thanatephorus*, *Waitea* and *Ceratobasidium* species. *Australian Journal of Biological Science*, **16**: 450-67.

Frank, A.B. 1891. Über die auf Verdauung von Pilzen bziehende Symbiose der mit endotrophen Mykorrhizen begabten Pflanzen sowie der Leguminosen und Erlen. *Ber. Deutsch. Bot. Ges.*, **9**: 244-53.

Hamada, M. 1940. Studien über die Mycorrhiza von *Galeola septentrionalis* Reichb. F. Ein newer tall der Mycorrhioza building durch intradikale Rhizomorphen. *Japan J. of Bot.*, **10**: 151-212.

Hamada, M. and S.I. Nakamura. 1963. Wurzelsymbiose von *Galeola altissima* Reichb. F. einer chlorophyll freien Orchideen, mit dem holtzzer sordenden Pilz *Hymenochaete crocicreas* Berk. *Et. Br Sci. Rep. Tohoku Univ. Series.*, **29**: 227-38.

Harley, J.L. 1969. *Biology of Mycorrhiza*. 2 ed. Leonard Hill, London, U.K.

Hietala, A.M. 1997. The mode of infection of a pathogenic uninucleate *Rhizoctonia* sp. in conifer seedling roots. *Can. J. For. Res.*, **27**: 471-80.

Hietala, A.M., J. Vahala, and J. Hantula. 2001. Molecular evidence suggests that *Ceratobasidium bicone* has an anamorph known as a conifer pathogen. *Mycological Research*, **105**: 555-62.

Ichilevich-Auster, M., B. Sneh, Y. Koltin, and I. Barash. 1985. Suppression of damping-off caused by *Rhizoctonia* species by a non-pathogenic isolate of *Rhizoctonia solani*. *Phytopathology*, **75**: 1080-1084.

Jonsson, L. and J.E. Nylund. 1979. *Favolaschia dybowskyana* singer (Aphyllophorales) a new orchid mycorrhizal fungus from tropical Africa. *New Phytologist*, **83**: 121-28.

Kaushik, P. 1983. *Ecological and Anatomical Marvels of the Himalayan Orchids*. Today and Tomorrow's Printers and Publishers, New Delhi, India.

Kaushik, P. 1988. Mycorrhiza in forest ecosystem. *Arya Bhatt*, **7**(1): 39-47.

Kaushik, P., S.K. Sharma, and S. Kumar. 1987. Mycorrhizal investigations in some orchids. *Current trends in mycorrhizal research*, 22-23. HAU, Hisar.

Kuhn, J.G. 1858. Die Krankheiten der Kulturgewachse, ihre Ursachen und ihre Verhutung. pp. 312. Gustav Bosselmann, Berlin.

Kusano, S. 1911. Preliminary note on *Gastrodia elata* and its mycorrhiza. *Annals of Botany*, **25**: 521-23.

Lan, J., J. Xu, and J. Li. 1996. Study on the infecting process of *Mycena Osmundicola* on *Gastrodia elata* by autoradiography. *Acta Mycol. Sin.*, **15**: 197-200.

Lan, J., J.T. Xu, and J.S. Li. 1994. Study on symbiotic relation between *Gastrodia elata* and *Armillaria mellea* by autoradiography. *Acta Mycol. Sin.*, **13**: 219-22.

Link, H.F. 1840. *Icones Selectae Anatomico-Botanicae II*: 10 + Tat. VII. C.G. Ludeeritz Verlag, Berlin.

Liu, Z.L. and J.B. Sinclair. 1991. Isolates of *Rhizoctonia solani* anastomosis gp 2-2 pathogenic to soyabean. *Plant Disease*, **75**: 682-87.

Masuhara, G., K. Katsuya, and K. Yamaguchi. 1993. Potential for symbiosis of *Rhizoctonia solani* and binucleate *Rhizoctonia* with seeds of *Spiranthes sinensis* var. *amoena* *in vitro*. *Mycological Research*, **97**: 746-52.

McKendrick, S.L., J.R. Leake, D.L. Taylor, and D.J. Read. 2000. Symbiotic germination and development of myco-heterotrophic plants in nature: ontogeny of *Corallorrhiza trifida* and characterization of its mycorrhizal fungi. *New Phytol.* **145**: 523-37.

Mehra, P.N. and B. Nath. 1974. Mycorrhiza in *Zeuxine strateumatica*. In: *Current trends in Plant Pathology* (eds. S.P. Raychaudhuri and J.P. Verma) pp. 289-302. Parnassus Publishers and Printers Pvt. Ltd., New Delhi, India.

Moore, R.T. 1987. The genera of *Rhizoctonia* like fungi *Ascorhizoctonia*, *Ceratrorhiza* gen. Nov. *Epulorhiza* gen. nov. *Moniliopsis* and *Rhizoctonia*. *Mycotaxon*, **29**: 91-99.

Mordue, J.E.M., R.S. Currah, and P.D. Bridge. 1989. An integrated approach to *Rhizoctonia* taxonomy, cultural biochemical and numerical techniques. *Mycological Research*, **92**(1): 78-90.

Neumann, G. 1934. Über die Mykorrhiza in der gattung *Gentiana*. *Zbl. Bakt.*, II. **89**: 433-58.

Ogoshi, A. 1987. Ecology and pathogenicity of anastomosis and intraspecific group of *Rhizoctonia* Kuhn. *Annu. Rev. Phytopathol.*, **25**: 125-43.

Ogoshi, A. 1996. Introduction the genus *Rhizoctonia* species. In: *Rhizoctonia species, Taxonomy, Molecular Biology, Ecology, Pathology and Disease Control* (eds. B. Sneh, S. Neate, G. Dijst and S. Jabaji) pp.1-9. Kluwer Academic Publishers, Dordrecht, The Netherlands.

Olive, L.S. 1957. Two new genera of the *Ceratobasidiaceae* and their phylogenetic significance. *Am. J. Bot.*, **44**: 429-33.

Parmeter, J.R., H.S. Whitney, and W.D. Platt. 1967. Affinities of some *Rhizoctonia* species that resemble mycelium of *Thanatephorus cucumeris*. *Phytopathology*, **57**: 218-23.

Parmeter, J.R. and H.S. Whitney. 1970. Taxonomy and nomenclature of the imperfect state. In: *Biology and*

Pathology of *Rhizoctonia solani* (ed. J.R. Parmeter Jr.) pp. 255. University of California Press, Berkeley.

Peterson, R.L. and R.S. Currah. 1990. Synthesis of mycorrhizae between protocorms of *Goodyera repens* (Orchidaceae) and *Ceratobasidium cereale*. *Can. J. Bot.*, **68**: 1117-1125.

Petkowski, J.E. and R.F. deBoer. 2001. *Rhizoctonia solani* anastomosis gp AG-3 and AG-2 as pathogens of potato and other crop in potato production systems. In: *Proceedings of The Second Australasian Soil borne Diseases Symposium* Lorne.

Rajkumar and P. Kaushik. 2007. Isolation of *Rhizoctonia solani* - A cellulose producing mycorrhizal fungus from *Zeuxine strateumatica* (L.) Schltr. *J. Orchid Soc. India*, **21**(1-2): 3-6.

Ramsbottom, J. 1922. The germination of orchid seeds. *Orchid Rev.*, **30**: 199-202.

Rayner, M.C. 1927. Mycorrhiza. *New Phytol.*, **26**: 22-45.

Reissek, S. 1847. *Nature*, Abhande. Zeitsche. **1**: 31-48.

Richardson, K.A., R.S. Currah, and S.M. Hambleton. 1993. Basidiomycetes endophytes from roots of neotropical epiphytic orchids. *Lindleyana*, **8**: 127-37.

Roberts, P. 1999. *Rhizoctonia forming fungi: a taxonomic guide*. Royal Botanic Gardens, Kew.

Rogers, D.P. 1935. *Lowa stud. Nat. Hist.*, **6**-7.

Rogers, D.P. 1943. The genus *Pellicularia* (Thelephoraceae). *Farlowia*, **1**: 95-118.

Ruhland, W. 1908. *Beitrag Zur Kenntnis des sog Vermehrungspilzes*. *K. Biol. Anst. F. Land U Forst. Arb.*, **6**: 71-76.

Saksena, R. and P. Vartaaja. 1960. Descriptions of new species of *Rhizoctonia*. *Can. J. Bot.*, **38**: 931-43.

Saksena, R. and P. Vartaaja. 1961. Taxonomy, morphology, and pathology of *Rhizoctonia* species from forest nurseries: *Can. J. Bot.*, **39**: 627-47.

Sappa, F and A.M. Mosca. 1954. *Ricerche sulla microflora dei terreni forestali Somali*. *Allionia*, **2**: 145-238.

Schultz, H. 1937. *Vergleichende Untersuchungen zur ökologie, Morphologie und Systematik des "Vermehrungspilzes"*. *Arb. Biol. Anst. (Reichsanst) Ber.*, **22**: 1-41.

Shehata, M.A., D.W. Davis, and N.A. Anderson. 1981. Screening peas for resistance to stem rot caused by *Rhizoctonia solani*. *Plant Disease*, **65**: 417-19.

Smith, S.E and D.J Read. 1997. *Mycorrhizal Symbiosis* 2<sup>nd</sup> ed. Academic Press London, U.K.

Sneh, B., L. Burpee, and A. Ogoshi. 1991. Identification of *Rhizoctonia* Species. The American Phytopathological Society. St. Paul Minnesota, USA. pp. 1-133.

Stahl, M. 1949. Die Mykorrhiza der Lebermoose mit besonderer Berücksichtigung der thallosen Formen. *Planta*, **37**: 103-48.

Stephens, C.T., L.F. Herr, A.F. Schmitthenner, and C.C. Powell. 1982. Characterization of *Rhizoctonia* isolates associated with damping-off of bedding plants. *Plant Disease*, **66**: 700-03.

Talbot, P.H.B. 1970. Taxonomy and nomenclature of the perfect state. In: *Rhizoctonia solani: Biology and Pathology* (ed. Parmeter, J.R.) pp. 20-31. Berkeley, California University of California Press.

Taylor, D.L. and T.D. Bruns. 1997. Independent specialized invasions of ectomycorrhizal mutualism by two non-photosynthetic orchids. *Proc. Nat. Acad. Sci.*, **94**: 4510-4515.

Terashita, T. 1996. Biological species of *Armillaria* symbiotic with *Galeola septentrionalis*. *Nippon Kingakukai-kaiho*, **37**: 45-49.

Tu, C.C. and J.W. Kimbrough. 1978. Systematics and phylogeny of fungi in the *Rhizoctonia* complex. *Bot. Gaz.*, **139**: 2154-2156.

Tu, C.C. and J.W. Kimbrough. 1975. Morphology, development and cytochemistry of the hyphae and sclerotia of species in the *Rhizoctonia* complex. *Can. J. Bot.*, **53**: 2282-2296.

Umata, H. 1995. Seed germination of *Galeola altissima* an achorophyllous orchid with aphyllorhizae. *Mycoscience*, **36**: 369-72.

Vij, S.P and M. Sharma. 1983. Mycorrhizal associations in North Indian Orchidaceae- A morphological study. *Bibliotheca Mycologica*, **91**: 467-503.

Vij, S.P, M. Sharma and N. Shekar. 1986. Asymbiotic germination of therapeutically important orchids. In: *Indigenous Medicinal Plants Including Microbes and Fungi* (ed. P Kaushik) pp. 71-77. Today and Tomorrow Printers and Publishers, New Delhi, India.

Warcup, J.H. and P.H.B. Talbot. 1966. Perfect stages of some *Rhizoctonias*. *Trans. Br. Mycol. Soc.*, **49**: 427-35.

Warcup, J.H. and P.H.B. Talbot. 1967. Perfect stages of *Rhizoctonias* associated with orchids. *New Phytologist*, **66**: 631-41.

Warcup, J.H. and P.H.B. Talbot. 1971. Perfect stages of *Rhizoctonias* associated with orchids II. *New Phytologist*, **70**: 35-40.

Warcup, J.H. and P.H.B. Talbot. 1980. Perfect stages of *Rhizoctonias* associated with orchids III. *New Phytologist*, **86**: 267-72.

Warcup, J.H. 1988. Mycorrhizal associations of isolates of *Sebacina vermifera*. *New Phytol.*, **110**: 227-31.

Weller, D.M., R.J. Cook, G. McNish, E.N. Bassett, R.L. Powelson, and R.R. Peterson. 1986. *Rhizoctonia* root rot of small grains favoured by reduced tillage in the Pacific Northwest. *Plant Disease*, **70**: 70-73.

Wolff, H. 1926. *Zur Physiologie des Wurzelpilzes von Neottia nidus-avis, Rich, und einigen grünen Orchideen*. *Jahrb Wiss. Bot.*, **66**: 1-34.

Zelmer, C.D. and R.S. Currah. 1995. *Ceratorkhiza pernacatena* and *Epulorhiza calendulina* spp. nov. mycorrhizal fungi of terrestrial orchids. *Can. J. Bot.*, **73**: 1981-1985.

Zuber, Mohd. and K. Manibusanrao. 1982. Studies on comparative electrophoretic patterns of proteins and enzyme from isolates of *Rhizoctonia solani* causing sheath blight disease in rice. *Can. J. Microbiol.*, **28**: 762-71.